• Title/Summary/Keyword: temperature fluctuations

Search Result 381, Processing Time 0.029 seconds

Maximum Power Point Tracking Technique of PV System for the Tracking of Open Voltage according to Solar Module of Temperature Influence (태양광 모듈 온도 영향에 따른 개방전압 추종을 위한 PV 시스템의 최대 전력 점 기법)

  • Seo, Jung-Min;Lee, Woo-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.38-45
    • /
    • 2021
  • The photovoltaic module has the characteristic of changing its output characteristics depending on the amount of radiation and temperature, where the arrays that connect them in series and parallel also have the same characteristics. These characteristics require the MPPT technique to find the maximum power point. Existing P&O and IncCond cannot find the global maximum power point (GMPP) for partial shading. Moreover, in the case of Improved-GMPPT and Enhanced Search-Skip-Judge-GMPPT, GMPP due to partial shading can be found, but the variation in the open voltage during temperature fluctuations will affect the operation of the Skip and will not be able to perform accurate MPPT operation. In this study, we analyzed the correlation between voltage, current, and power under solar module and array conditions. We also proposed a technique to find the maximum power point even for temperature fluctuations using not only the amount of radiation but also the temperature coefficient. The proposed control technique was verified through simulations and experiments by constructing a 2.5 kW single-phase solar power generation system.

An Effect of Pressure Fluctuations of a Combustion Chamber on the Modulation of Equivalence Ratio in the Channel of the Burner (연소실 압력 변동이 버너내부의 당량비 변조에 미치는 영향)

  • Hong, Jung-Goo;Oh, Kwang-Chul;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.202-207
    • /
    • 2007
  • In order to understand the phenomena of combustion instability, an experimental study was conducted at the moderate pressure and ambient temperature conditions. The flame behavior and the pressure fluctuations were measured in a dump combustor. Various types of combustion modes occurred in accordance with the equivalence ratio and the fuel supplying conditions. The fluctuation of pressure, heat release and equivalence ratio were measured by piezoelectric pressure sensor, high speed Intensified Charge Coupled Device (HICCD) camera and gas chromatography respectively. Two representative modes were self-excited pressure oscillations at the resonance of combustion chamber (200Hz) and instabilities related to the modulated fuel flow rate through the fuel holes (10Hz). It is found that, especially in an unchoked fuel flow condition, the modulation of the fuel flow rate affects the characteristics of flame behavior and pressure fluctuations in a lean premixed flame.

Bubble Formation in Liquid Helium under Negative Pressure by Quantum Tunneling near Absolute Zero Temperature (절대 0도 부근에서 양자터널링에 의한 헬리움(He)액체의 부압하에서의 기포형성)

  • Kwak, H.;Jung, J.;Hong, J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.354-359
    • /
    • 2001
  • As the temperature of liquid under negative pressure approaches the absolute zero, the nucleation process due to thermal fluctuations hardly occurs. Instead of this mechanism, quantum fluctuations may lead the formation of nucleus for new phase in metastable state. In this study, the thermal as well as quantum nucleation bubble in liquid helium under negative pressure was investigated theoretically. The energy barrier against nucleation was estimated by molecular interaction due to the Londom dispersion force. It is shown that the phase transition from liquid to vapor in is possible due to the quantum tunneling below 0.2 K for Helium-4 and 0.1 K for Helium-3, at negative pressures close to the ideal tensile strength at which every liquid molecules become bubbles simultaneously.

  • PDF

An Apparatus for Monitoring Real-time Uranium Concentration Using Fluorescence Intensity at Time Zero

  • Lee, Sang-Mock;Shin, Jang-Soo;Kang, Shin-Won
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.166-174
    • /
    • 2001
  • An apparatus for detecting remote real-time uranium concentration using an optrode was developed. An optrode to detect uranium fluorescence as remote real-time control was designed. Fluorescence intensity at time 2ero was derived by the fluorescence signal processing and the algorithm to exclude the quenching effect of various quenchers and temperature fluctuations. This apparatus employing the above deriving method and the optrode has an error range within 6% in spite of serious fluorescence lifetime changes due to the quenching effect and temperature fluctuations. The detection limit is 0.06 ppm and the linearity is excellent between 0.06 ppm and 2 ppm on the aqueous uranium solution.

  • PDF

Analysis of 1/f Noise in Fully Depleted n-channel Double Gate SOI MOSFET

  • Kushwaha Alok;Pandey Manoj Kumar;Pandey Sujata;Gupta A.K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.187-194
    • /
    • 2005
  • An analysis of the 1/f or flicker noise in FD n-channel Double Gate SOI MOSFET is proposed. In this paper, the variation of power spectral density (PSD) of the equivalent noise voltage and noise current with respect to frequency, channel length and gate-to-source voltage at various temperatures and exponent $C(i.e\;1/f^c$ is reported. The temperature is varied 125 K from to room temperature. The variation of PSD with respect to channel length down to $0.1{\mu}m$ technology is considered. It is analyzed that l/f noise in FD n-channel Double Gate SOI MOSFET is due to both carrierdensity fluctuations and mobility-fluctuations. But controversy still exits to its origin.

INFLUENCE OF CONVECTION ON LINE ASYMMETRIES

  • Park, Yong-Sun;Yun, Hong-Sik
    • Journal of The Korean Astronomical Society
    • /
    • v.19 no.1
    • /
    • pp.15-31
    • /
    • 1986
  • We have analyzed Gray's observed mean line bisectors of FS, G0, G2, and G5 normal dwarf stars and interpreted them by computing theoretical line bisectors based on a two stream model. A set of perturbed models has been derived, and their detailed structures on temperature fluctuations and velocity fields are presented as a function of depth, which account for the observed bisectors. From the present study, it is found that the degree of stellar convective overshootings and temperature fluctuations in the upper atmospheres increases towards earlier spectral types. The convection cell size inferred from these models is found to increase also with the advancing earlier type. We demonstrated the usefulness of line bisector analysis as a diagnostic probe for stellar convection.

  • PDF

Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor (초고온 가스로용 Alloy 617의 크리프 수명예측 신뢰성 평가)

  • Kim, Woo-Gon;Park, Jae-Young;Kim, Seon-Jin;Hong, Sung-Deok;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.721-728
    • /
    • 2012
  • This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

Effects of Thinning and Climate on Stem Radial Fluctuations of Pinus ponderosa and Pinus lambertiana in the Sierra Nevada

  • Andrew Hirsch;Sophan Chhin;Jianwei Zhang;Michael Premer
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.81-95
    • /
    • 2023
  • Due to the multiple ecosystem benefits that iconic large, old growth trees provide, forest managers are applying thinning treatments around these legacy trees to improve their vigor and reduce mortality, especially in the face of climate change and other forest health threats. One objectives of this study was to analyze sub-hourly stem fluctuations of legacy ponderosa (Pinus ponderosa Dougl. Ex P. & C. Laws) and sugar pines (Pinus lambertiana Dougl.) in the mixed-conifer forests of the Sierra Nevada in multiple different radius thinning treatments to assess the short-term effects of these treatments. Thinning treatments applied were: R30C0 (9.1 m radius), R30C2 (9.1 m radius leaving 2 competitors), and RD1.2 (radius equaling DBH multiplied by 1 ft/in multiplied by 1.25). The other objective was to assess climatic drivers of hourly stem fluctuations. Using the dendrometeR package, we gathered daily statistics (i.e. daily amplitude) of the stem fluctuations, as well as stem cycle statistics such as duration and magnitude of contraction, expansion, and stem radial increment. We then performed correlation analyses to assess the climatic drivers of stem fluctuations and to determine which radial thinning treatment was most effective at improving growth. We found an important role that mean solar radiation, air temperature, and relative humidity play in stem variations of both species. One of the main findings from a management perspective was that the RD1.2 treatment group allowed both species to contract less on warmer and higher solar radiation days. Furthermore, sugar pine put on more stem radial increment on higher solar radiation days. These findings suggest that the extended radius RD1.2 thinning treatment may be the most effective at releasing legacy sugar and ponderosa pine trees compared to the other forest management treatments applied.

Theory and technology of growing striation-free crystals

  • Scheel, Hans J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.174-186
    • /
    • 2004
  • Striations are growth-induced inhomogeneities which hamper the applications of solid-solution crystals and of doped crystals in numerous technologies. Thus the optimized performance of solid solutions often can not be exploited. The inhomogeneity problem can be solved in specific cases by achieving a distribution coefficient one in growth from melts and from solutions. Macrostep-induced striations can be suppressed by controlling the growth mode, by achieving growth on facets thereby preventing step bunching. Thermal striations are commonly assumed to be caused by convective instabilities so that reduced convection by microgravity or by damping magnetic fields was and is widely attempted to reduce such inhomogeneities. Here it will be shown that temperature fluctuations at the growth interface cause striations, and that hydrodynamic fluctuations in a quasi-isothermal growth system do not cause striations. The theoretically derived conditions were experimentally established and allowed the growth of striation-free crystals of $KTa_{1-x}Nb_xO_3$"KTN" solid solutions. Hydrodynamic variations from the accelerated crucible rotation technique ACRT did not cause striations as long as the temperature was controlled within $0.03^{\circ}$ at $1200^{\circ}C$ growth temperature. Alternative approaches to solve or reduce the segregation and striation problems in growth from melts and from solutions are discussed as well.