DOI QR코드

DOI QR Code

Reliability Evaluation on Creep Life Prediction of Alloy 617 for a Very High Temperature Reactor

초고온 가스로용 Alloy 617의 크리프 수명예측 신뢰성 평가

  • Kim, Woo-Gon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Park, Jae-Young (Mechanical & Automotive Engineering Department, Pukyong National University) ;
  • Kim, Seon-Jin (Mechanical & Automotive Engineering Department, Pukyong National University) ;
  • Hong, Sung-Deok (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Yong-Wan (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
  • 김우곤 (한국원자력연구원 원자력재료개발부) ;
  • 박재영 (부경대학교 기계자동차공학과) ;
  • 김선진 (부경대학교 기계자동차공학과) ;
  • 홍성덕 (한국원자력연구원 원자력재료개발부) ;
  • 김용완 (한국원자력연구원 원자력재료개발부)
  • Received : 2012.04.17
  • Published : 2012.10.25

Abstract

This paper evaluates the reliability of creep rupture life under service conditions of Alloy 617, which is considered as one of the candidate materials for use in a very high temperature reactor (VHTR) system. A Z-parameter, which represents the deviation of creep rupture data from the master curve, was used for the reliability analysis of the creep rupture data of Alloy 617. A Service-condition Creep Rupture Interference (SCRI) model, which can consider both the scattering of the creep rupture data and the fluctuations of temperature and stress under any service conditions, was also used for evaluating the reliability of creep rupture life. The statistical analysis showed that the scattering of creep rupture data based on Z-parameter was supported by normal distribution. The values of reliability decreased rapidly with increasing amplitudes of temperature and stress fluctuations. The results established that the reliability decreased with an increasing service time.

Keywords

Acknowledgement

Supported by : 교육과학기술부

References

  1. W. G. Kim, S. N. Yin, W. S. Ryu, and J. H. Jang, Proc. of CREEP8, CREEP 2007-26834, Texas, USA (2007).
  2. W. G. Kim, S. N. Yin, I. H. Jung, and Y. W. Kim, Key Engineering Materials 385, 693 (2008).
  3. W. G, Kim, S. N. Yin, S. H. Kim, W. S. Ryu, C. B. Lee, and S. J. Kim, Met. Mater. Int, 15, 559 (2009).
  4. K. Kimura, H. Kushima, K. Sawada, and Y. Toda, Proc. of CREEP8, CREEP 2007-26406, Texas, USA (2007).
  5. K. Maruyama and K. Yoshimi, Proc. of CREEP8, CREEP 2007-26150, Texas, USA (2007).
  6. F. Masuyama and T. Tokunaga, Proc. 2nd ECCC Creep Conf. (eds. I. A. Shibli and S. R. Holdsworth), p.19, Zurich, Switzerland (2009).
  7. W. G. Kim, S. H. Kim, and W. S. Ryu, KSME Int. Journal 15, 1463 (2001).
  8. W. G. Kim, S. H. Kim, and W. S. Ryu, KSME Int. Journal 16, 1420 (2002).
  9. J. Zhao, D. Li, J. Zhang, W. Feng, and Y. Fang, International Journal of Pressure Vessels and Piping, 86, 599 (2009).
  10. J. Zhao, D. Li, and Y. Fang, Proc. 2nd ECCC Creep Conference (eds. I.A. Shibli and S.R. Holds worth), p.778, Zurich, Switzerland (2009).
  11. F. Schubert, U. Bruch, R. Cook, H. Diehl, P. Ennis, W. Jakobeit, H. Penkalla, E. Heesen, and G. Ulirich, Nuclear Technology, 66, 227 (1984).
  12. K. Natesan, A. Purohit, and S. Tam, ANL Laboratory Report, NUREG/CR-6824 ANL-02/37 (2002).
  13. W. G. Kim, S. N. Yin, G. G. Lee, Y. W. Kim, and S. J. Kim, Int. J. of Pressure Vessels and Piping, 87, 289 (2010).
  14. F. R. Larson and J. Miller, Trans. ASME, 74, 765 (1952).
  15. W. G, Kim, J. Y. Park, S. Y. Yin, D. W. Kim, J. Y. Park, and S. J. Kim, Korean J. Met. Mater. 49, 275 (2011).