• Title/Summary/Keyword: temperature difference energy

Search Result 1,108, Processing Time 0.023 seconds

A Performance Study of Portable Hydrogen Storage Tank (휴대용 수소 저장체 성능 특성 연구)

  • Park, Joon-Ho;Hwang, Yong-Sheen;Jee, Sang-Hoon;Kim, Sung-Han;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.315-318
    • /
    • 2009
  • Hydrogen is the ideal candidate as an alternative energy carrier, so many hydrogen storage methods are investigated. The hydrogen storage method using metal hydride is good candidate as energy sources for portable devices because hydrogen-storage as metal hydride shows large volumetric storage density. In this study, we investigated the variations of hydrogen charging/discharging performance of metal hydride tanks at different temperature conditions. We charged metal hydride tanks with hydrogen in low temperature because of the exothermic reactions of hydrogen absorption while we discharged in high temperature to provide sufficient heat because of the endothermic reactions of desorption. In addition, we investigated the difference of hydrogen charging/discharging performance between two tanks having different sizes.

  • PDF

An Experimental Study on Thermoelectric Generator Performance for Waste Coolant Recovery Systems in Vehicles (자동차 냉각수 폐열회수 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.7
    • /
    • pp.329-334
    • /
    • 2014
  • This study indicated the possibility of energy regeneration from waste coolant heat, by using thermoelectric generation integrated with heat pipe. The internal combustion engine rejects more than 60% wasteful energy to the atmosphere by heat. The thermoelectric generator has recently been studied, to convert the energy from engine waste heat into electricity. For coolant waste heat recovery, a thermoelectric generator was investigated, to find out the possibility of vehicular application. Performance characteristics were conducted with various test conditions of coolant temperature, coolant mass flow rate, air temperature, and air velocity, with the thermoelectric generator installed either horizontally or vertically. Experimental results show that the electric power and conversion efficiency increases according to the temperature difference between the hot and cold side of the thermoelectric generator, and the coolant flow rate of the hot side heat exchanger. Performance improvement can be expected by optimizing the heat pipe design.

-A Study on the Thermal Performance of T.W System with Various Wall Surface Finishes- (집열면의 마감상태에 따른 축열벽 시스템의 열성능 변화에 관한 연구)

  • 송국섭;이언구;이명호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.64-69
    • /
    • 1993
  • The solar energy collection of a passive solar system depends on the finish of collecting surfaces. In this study, the test models of T.W system with different wall surface finishes were constructed, and the temperature distribution through the models was monitored. At the same time, a computer program based on F.D.M was developed in order to simulate various surface finishes. The difference of indoor temperature between the model with white color finish ($\alpha$=0.25) and the one with black color finish ($\alpha$=0.95) was about 1$0^{\circ}C$. For the wall with selective coating, the indoor temperature was 4-5$^{\circ}C$ higher than that of red brick wall, and 3-4$^{\circ}C$ higher than that of wall with black paint.

  • PDF

A Study of Heat Transfer during Freezing Process of Water in a Vertical Cylinder. (수직 원통형 축열조내 물의 응고 과정시 열전달에 관한 실험적 연구(작동 유체의 유동방향에 따른 열저장 성능 비교))

  • Heo, Gyeong;Kim, Young-Ki;Kim, Young-Jung;Kim, Jun-Geun;Lim, Jang-Sun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.223-229
    • /
    • 1995
  • Heat transfer phenomena during freezing process of the water in a vertical cylinder were experimentally studied. Purified water was inserted into the vertical cylinder Experiment was performed with two conditions ; the inlet temperature of the working fluid was maintained to be -1$0^{\circ}C$ and the direction of the working fluid was to be upward or downward. Both the mean temperature of the liquid and temperature difference of cylinder tube wall in the upward were lower than those in the downward. In addition, shape of ice layer in the upward was more uniform than that in the downward. Finally, time-varying total heat energy stored in the water in the upward was higher than that in the downward.

  • PDF

Parametric Study of DF-$CO_2$ Transfer Chemical Laser by the Numerical Model Simulation

  • Kim, Sung-Ho;Cho, Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.527-530
    • /
    • 1990
  • The effects of the concentration and the pressure of reactants on laser output were reported in the previous study. The present study is made of the following main parameters on laser characteristics; the initial temperature of the reaction mixture, inert gas (He) added in the reaction mixture, and the level of initiation as a function of time. As the initial temperature of reaction mixture decreases, both the output energy and the duration time increase. Especially, the output energy is linearly proportional to the inverse of the initial temperature. In order to obtain a proper lasing for a given condition, a sufficient amount of He must be added: The optimum ratio of [He] to $[D_2\;+\;F_2\;+\;CO_2]$ is found to be greater than 2. In addition, the time dependence of level of initiation (TDLI) shows no significant difference in total output energy from that of the premixed model, but only the power profile.

An Experimental Study on the heat transfer characteristics and performance of storage tanks with mantle heat exchanger (맨틀형 축열조의 열전달 성능 및 특성에 관한 실험적 연구)

  • Kang, Y.H.;Kwak, H.Y.;Yoon, H.G.;Yoo, C.G.;Yoon, H.S.;Chun, W.G.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2001
  • The heat transfer characteristics of horizontal and vertical mantle heat storage tanks are studied in order to replace the tank-coil heat exchanger for application in thermosyphon solar water heaters. In this study, 5 mantle storage tanks with different geometric shape are manufactured into stainless steel and each tank is tested. For the test, The inlet flow rate of the heat transfer fluid is maintained 1.2 lpm consistently. The heat transfer fluid temperature through the mantle is $70{\pm}1^{\circ}C$. The temperatures of 26 points included the ambient temperature are measured at every one minute. The measured data are used to calculate the overall heat transfer coefficient(UA) using the LMTD(Log Mean Temperature Difference) method and it is used on the analysis of the heat transfer characteristics to search for optimum arrangement.

  • PDF

Comparison Study on Thermal Environment Characteristics in Each Region and the Seasons of Summer and Winter Through Air Temperature Analysis in Urban Areas (도시의 기온 분석을 통한 지역별 열 환경 특성 해석과 동·하절기 계절 간 비교연구)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.83-93
    • /
    • 2012
  • This study is to perform the effect of urbanization in urban and suburban districts, and to identify regional characters of climate according to the analysis of slope at rise, and descent of temperature and globe temperature, correlation between seasonal temperature analysis, and calculation of degree hour. According to this study, the result is summarized as follows. (1) The average temperature, rated from high to low, consists of residential area, Daegu weather station, intracity, green belt, water-front green belt, and suburban. (2) At the rise and descent of temperature, the result of the slope change of in each point may be one of the useful indexes to be able to perform the regional unique thermal characteristic, including the seasonal urbanization. (3) Although there is a difference between the surface of the earth and ambient environment. The result of the correlation of temperature between summer and winter is that temperature slope in urban districts was higher than in suburban districts, and the difference of slope was unvaried among the four observations in the same city region. (4) To show objectively, regional thermal characteristics in urban and suburban districts, the exponentiation of winter degree hour and summer degree hours were checked. The result of the exponentiation is that the more artificial a region, the lower index.

Model to Predict Non-Homogeneous Soil Temperature Variation Influenced by Solar Irradiation (일사영향권내 비균질 토양의 열적거동 예측 모델)

  • Kim, Yong-Hwan;Hyun, Myung-Taek;Kang, Eun-Chul;Park, Yong-Jung;Lee, Euy-Joon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.1-7
    • /
    • 2006
  • This study is to develop a model to predict the soil temperature variation in Korea Institute of Energy Research using its thermal properties, such as thermal conductivity and diffusivity. Soil depth temperature variation is very important in the design of a proper Ground Source Heat Pump (GSHP) system. This is because the size of the borehole depends on the soil temperature distribution, and this can decrease GSHP system cost. If the thermal diffusivity and thermal conductivity are known, the soil temperature can be predicted by either the Krarti equation or the Spitler equation. Then a comparison with the Krarti equation and Spitler equation data with the real measured data can be performed. Also, the thermal properties can be reasonably approximated by performing a fit of the Krarti and Spitler equations with measured temperature data. This was done and, as a result, the Krarti equation and Spitler equation predicted values very close to the measured data. Although there is about a $0.5^{\circ}C$ difference between the deep subsurface prediction (16m - 60m), with this equation, were expected to have model this Non-Homogeneous Soil Temperature phenomenon properly. So, it has been shown that a prediction of non-homogeneous soil temperature variation influenced by solar radiation can be achieved with a model.

Study on Temperature Variation by Greenhouse Soil Warming System Using Solar Thermal Energy (2) - Required Energy per Unit Area for Soil Warming - (태양열을 이용한 시설재배 지중변온가온의 토양 온도특성 연구(2) - 지중변온가온의 단위면적당 소요에너지 -)

  • Kim, Jin-Hyun;Kim, Tae-Wook;Nah, Kyu-Dong;Kim, Tae-Soo;Kim, Eun-Tae;Chung, Suk-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2010
  • The temperature of root zone was known as an important factor for the growth of crops and reduction of energy in greenhouse. The purpose of this study was to design the apposite inflow of calories per the unit area by comparison of temperature in the warmed and non-warmed soil. The energy needed for soil warming about pipe length showed the change of temperature on inflow and outflow as $2^{\circ}C{\sim}3^{\circ}C$(average $2.5^{\circ}C$). Therefore, the inflow per the unit hour was 3,450, 57,5 kcal/$h{\cdot}m^2$ on soil heating respectively. The non-warmed soil temperature in greenhouse made a difference by depth and it was partially affected inner temperature under 15 cm, but it was not above 15 cm. The soil temperature would be raised over $5^{\circ}C$ than non-warmed soil to increase effect of soil warming. Therefore, the inflow per the unit area that should be provided was about 100 kcal/$h{\cdot}m^2$.