• Title/Summary/Keyword: temperature cycles

Search Result 881, Processing Time 0.033 seconds

Effect of Thermal Cycle on Strength of Ceramic and Metal Joint (세라믹/금속접합재의 강도에 미치는 열사이클 영향)

  • 박영철;오세욱;김광영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1664-1673
    • /
    • 1994
  • As a fundamental study on effects of thermal-cycles on residual stress of ceramics/metal joints, residual stresses in $Si_3N_4$/SUS304 joint specimens were measured before and single thermal-cycle by X-ray diffraction method and finite element method(FEM). The residual stress was found to increase after single thermal-cycle, which was agreeable with the results of residual stress measurement by X-ray diffraction method and residual stress analysis by finite element method. After the residual stress measurement, 4-point bending tests were performed. The relationship between the bending strength, the thermal-cycle temperature and hold time was examined. The bending strength was found to decrease with the increase of residual stress in linear relation.

The Relationship between a Wear Depth :and a Decrease of the Contacting Force in the Nuclear Fuel Fretting (핵연료봉 프레팅마멸에서 마멸깊이와 접촉하중 감소사이의 관계)

  • Lee Young-Ho;Kim Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • Sliding wear tests have been performed to evaluate the effect of normal load decrease on the wear depth of nuclear fuel rods in room temperature air. The objectives of this study are to quantitatively evaluate the supporting ability of spacer grid springs, to estimate the wear depth by using the contacting force decrease and to compare the wear behavior with increasing test cycles (up to $10^7$) at each spring condition. The result showed that the contacting load decrease depends on the spring shape and the applied slip amplitude. The estimated wear depth is smaller when compared with measured wear depth. Based on the test results, the wear mechanism, the role of wear debris layer and the spring shape effect were discussed.

Durability Improvement of Electrochromic Tungsten Oxides Films

  • Yang, J.Y.;Kim, J.W.;Kang, G.H.;K.D.Ko;Lee, G.D.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.157-157
    • /
    • 1999
  • Electrochromic tungsten oxide films were prepared by the electron beam deposition, and the dependence of the electrochemical stability and the optical properties on the titanium concentration, and on the annealing temperature, that was investigated. coloring and bleaching experiments were repeated by cyclic voltammetry in a propylene carbonate solution of LiClO4. Spectrometry was used to assess the stability of the transmittance in the degraded films. Tungsten oxide films with titanium contents of about 10~15 mol% were found to be most stable, undergoing the least degradation during the repeated for coloring and bleaching cycles. The reason for this small amount of degradation was the reduction of lithium ion trapping sites in the films, which results in an increased durability. Tungsten oxide films with titanium contents of about 20 mol% were annealed at 20$0^{\circ}C$ for 1 hour, and this results showed that durability of films were increased.

  • PDF

Stabilized operating condition of resistive superconducting fault current limiter using YBCO film (YBCO film을 이용한 저항형 한류기의 안정적인 동작 조건)

  • 최효상;현옥배;김혜림;황시돌;김상준
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.133-135
    • /
    • 2000
  • We fabricated resistive super- conducting fault current limiters (SFCL) based on YBCO thin films grown on a 2" diameter $Al_{2}$O_{3} substrate. The minimum quench current of the current minimum quench current of the current limiting element was about 8 $A_{peak}. This SFCL successfully controlled the fault current below 14.3 $A_{peak} at the voltage of 100$V_{rms}, which is otherwise to increase up to 141$A_{peak}. and the quench completion time is less than 3 msec. The temperature of the current limiting element rose to about 200K in 3 cycles after fault. The SFCL showed reproducible characteristics during hundreds times of repeated experiments.ents.

  • PDF

A Study on the Expected Life Evaluation of Rotating Machine (회전 기기의 수명 예측 평가에 관한 연구)

  • Kim, Ki-Joon;Kim, Sang-Jin;Oh, Yong-Chei;Seong, Nak-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.73-76
    • /
    • 2000
  • Traction motors that is one of the rotating machines for urban transit EMU have been subjected to increased demand for higher operating temperature, more demanding duty cycles, higher starting current, frequent voltage transients and severe environmental exposure. With the advent of PWM drives using power IGBTs in addition to the thermal considerations, it is important to take into account the impact of the dielectric stress upon the winding insulation system life. In analyzing the life of the stator winding, which is the heart of the motor, the majority of all winding failures are usually caused by a combination of various stresses acting on the insulation materials and system. In this paper, to evaluate the expected life of traction motor for urban transit E.M.U. it is proposed a new test method of complex accelerating degradation.

  • PDF

Metal-insulator Transition of VO2 Thin Films and Nanowires Induced Photo-excitation

  • Sohn, Ahrum;Kim, Haeri;Kim, Eunah;Kim, Dong-Wook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.196.1-196.1
    • /
    • 2014
  • VO2 exhibits metal-insulator transition (MIT), of which critical temperature (TC) is about 340 K. There have been many reports that MIT can be induced by UV light as well as heat. Clear mechanism regarding such photo-induced MIT has not been clarified. We have compared the MIT behaviors of VO2 thin film during heating-cooling cycles with and without light. We tried several light sources with different wavelengths (red, blue, and UV). Tc and hysteresis width of the resistance change were influenced by the illumination of the samples. We performed Kelvin probe force microscopy (KPFM) studies, which can reveal the evolution of the local sample work function. In this presentation, we will discuss possible physical origins for the photo-induced effects on the MIT behaviors of the VO2 samples.

  • PDF

Enhanced Coulomb Counting Method for State-of-Charge Estimation of Lithium-ion Batteries based on Peukert's Law and Coulombic Efficiency

  • Xie, Jiale;Ma, Jiachen;Bai, Kun
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.910-922
    • /
    • 2018
  • Conventional battery state-of-charge (SoC) estimation methods either involve sophisticated models or consume considerable computational resource. This study constructs an enhanced coulomb counting method (Ah method) for the SoC estimation of lithium-ion batteries (LiBs) by expanding the Peukert equation for the discharging process and incorporating the Coulombic efficiency for the charging process. Both the rate- and temperature-dependence of battery capacity are encompassed. An SoC mapping approach is also devised for initial SoC determination and Ah method correction. The charge counting performance at different sampling frequencies is analyzed experimentally and theoretically. To achieve a favorable compromise between sampling frequency and accumulation accuracy, a frequency-adjustable current sampling solution is developed. Experiments under the augmented urban dynamometer driving schedule cycles at different temperatures are conducted on two LiBs of different chemistries. Results verify the effectiveness and generalization ability of the proposed SoC estimation method.

A Study on Electrical Properties of PZT Thin Films Deposited on the Glass Substrates (유리기판 위에 증착한 PZT 박막의 전기적 특성에 관한 연구)

  • Jeong, Kyu-Won;Ju, Pil-Yeon;Park, Young;Yi, Jun-Sin;Song, Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.1
    • /
    • pp.24-29
    • /
    • 2001
  • PZT thin films(4000A) have prepared onto 1737 corning glass and ITO coated glass substrates with a RF magnetron sputtering system using Pb_{1.05}(Zr_{0.52},Ti_{0.48})O_3$ceramic target, Electrical properties of PZT thin film deposited after ITO coated glass were P${\gamma}$ was decreased by 25% after 109cycles, respectively. With the RTA treatment duration and temperature increased, the crystallization of PZT thin films were enhanced, however, the leakage current density became higher. The leakage current mechanism was found to be space charge conduction by the defects and oxygen vacancies existing in PZT and PZT/bottom electrode interfaces.

  • PDF

Assessment of Short-Time Characteristic ACSR-OC Conductor (ACSR-OC 전선의 단시간 특성 평가)

  • Lee, Joong-Kwan;Kim, Dong-Muyng;Yi, Sue-Muk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1446-1448
    • /
    • 2002
  • The short-time permissible temperature of an overhead distribution line conductor is determined by the softening characteristics of ACSR-OC, ACSR AW/OC 160, typical conductors employed in the overhead distribution line. Transient heat transfer equation and Newton's cooling law were applied to analyze the heating and cooling effects of the insulating conductors, respectively, and the error of co-relation was calibrated after simulating the softening test to assess the short-time characteristic of the insulating conductor. In order to verify the softening characteristic, the conductors were tested with heat cycle. The test was totally carried out 200 cycles, and 1 cycle was to heat and cool at 1.1 times permissible current of the conductor, 1.15 times for 120 minutes, respectively. After heating, the tensile strength and surface of the conductor were observed. In case of ACSR-OC, as the result of 100 hour heating test, the tensile strength of the insulator was 0.8 times the initial value. This is equivalent to the value of the conductors which are used for 10 years at sites.

  • PDF

Atomistic Simulation of Sintering Mechanism for Copper Nano-Powders

  • Seong, Yujin;Hwang, Sungwon;Kim, See Jo;Kim, Sungho;Kim, Seong-Gon;Kim, Hak Jun;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.247-253
    • /
    • 2015
  • The sintering mechanisms of nanoscale copper powders have been investigated. A molecular dynamics (MD) simulation with the embedded-atom method (EAM) was employed for these simulations. The dimensional changes for initial-stage sintering such as characteristic lengths, neck growth, and neck angle were calculated to understand the densification behavior of copper nano-powders. Factors affecting sintering such as the temperature, powder size, and crystalline misalignment between adjacent powders have also been studied. These results could provide information of setting the processing cycles and material designs applicable to nano-powders. In addition, it is expected that MD simulation will be a foundation for the multi-scale modeling in sintering process.