DOI QR코드

DOI QR Code

Atomistic Simulation of Sintering Mechanism for Copper Nano-Powders

  • Seong, Yujin (Department of Mechanical Engineering, POSTECH) ;
  • Hwang, Sungwon (Department of Mechanical Engineering, POSTECH) ;
  • Kim, See Jo (Department of Mechanical Design Engineering, Andong National University) ;
  • Kim, Sungho (Center for Computational Sciences, Mississippi State University) ;
  • Kim, Seong-Gon (Department of Physics and Astronomy, Mississippi State University) ;
  • Kim, Hak Jun (Agency for Defense Development) ;
  • Park, Seong Jin (Department of Mechanical Engineering, POSTECH)
  • Received : 2015.08.13
  • Accepted : 2015.08.26
  • Published : 2015.08.28

Abstract

The sintering mechanisms of nanoscale copper powders have been investigated. A molecular dynamics (MD) simulation with the embedded-atom method (EAM) was employed for these simulations. The dimensional changes for initial-stage sintering such as characteristic lengths, neck growth, and neck angle were calculated to understand the densification behavior of copper nano-powders. Factors affecting sintering such as the temperature, powder size, and crystalline misalignment between adjacent powders have also been studied. These results could provide information of setting the processing cycles and material designs applicable to nano-powders. In addition, it is expected that MD simulation will be a foundation for the multi-scale modeling in sintering process.

Keywords

References

  1. H. Zhu and R. S. Averback: Mater. Sci. Eng., 204 (1995) 96. https://doi.org/10.1016/0921-5093(95)09944-1
  2. J. S. Raut, R. B. Bhagat and K. A. Fichthorn: Nanostruct. Mater., 10 (1998) 837. https://doi.org/10.1016/S0965-9773(98)00120-2
  3. P. Zeng, S. Zajac, P. C. Clapp and J. A. Rifkin: Mater. Sci. Eng., 252 (1998) 301. https://doi.org/10.1016/S0921-5093(98)00665-0
  4. A. J. Haslam, S. R. Phillpot, D. Wolf, D. Moldovan and H. Gleiter: Mater. Sci. Eng., 318 (2001) 293. https://doi.org/10.1016/S0921-5093(01)01266-7
  5. V. Yamakov, D. Moldovan, K. Rastogi and D. Wolf: Acta Mater., 54 (2006) 4053. https://doi.org/10.1016/j.actamat.2006.05.004
  6. A. Moitra, S. Kim, S.-G. Kim, S. J. Park, R. M. German and M. F. Horstemeyer: Acta Mater., 58 (2010) 3939. https://doi.org/10.1016/j.actamat.2010.03.033
  7. F. Hussain, S. S. Hayat, M. Imran, S. A. Ahmad and F. Bouafia: Comput. Mater. Sci., 65 (2012) 264. https://doi.org/10.1016/j.commatsci.2012.07.033
  8. B. Cheng and A. H. Ngan: Int. J. Plast, 47 (2013) 65. https://doi.org/10.1016/j.ijplas.2013.01.006
  9. M. S. Daw and M. I. Baskes: Phys. Rev. B, 29 (1984) 6443. https://doi.org/10.1103/PhysRevB.29.6443
  10. M. S. Daw, S. M. Foiles and M. I. Baskes: Mater. Sci. Rep., 9 (1993) 251. https://doi.org/10.1016/0920-2307(93)90001-U
  11. LAMMPS MD simulator, http://lammps.sandia.gov/index.html
  12. Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter and J. D. Kress: Phys. Rev. B, 63 (2001) 224106. https://doi.org/10.1103/PhysRevB.63.224106
  13. R. M. German: Powder metallurgy and particulate materials processing: the processes, materials, products, properties, and applications, Metal Powder Industries Federation, Princeton, NJ (2005).
  14. Y. Mishin and C. Herzig: Mater. Sci. Eng., 260 (1999) 55. https://doi.org/10.1016/S0921-5093(98)00978-2
  15. M. A. Tschopp and D. L. McDowell: Phil. Mag., 87 (2007) 3871. https://doi.org/10.1080/14786430701455321