• 제목/요약/키워드: temperature crack

검색결과 1,344건 처리시간 0.03초

LNG 저장탱크용 9% Ni강 용접부의 저온피로균열진전 특성 (Fatigue Crack Growth Characteristics of 9% Ni Steel Welded Joint for LNG Storage Tank at Low Temperature)

  • 김재훈;심규택;김영균;안병욱
    • Journal of Welding and Joining
    • /
    • 제28권5호
    • /
    • pp.45-50
    • /
    • 2010
  • The fatigue crack growth characteristics of base metal and weld joint of 9% Ni steel for LNG storage tank was carried out using CT specimen at room temperature and $-162^{\circ}C$. Fatigue crack growth rate of base and weld metals at RT and $-162^{\circ}C$ was coincided with a single line independent of the change of stress ratio and temperature. In the region of lower stress intensity factor range, fatigue crack growth rate at $-162^{\circ}C$ was slower than that at RT, and the slop of fatigue crack growth rate at $-162^{\circ}C$ increased sharply with propagating of fatigue crack, fatigue crack growth rate at RT and $-162^{\circ}C$ was intersected near the region of $2{\times}10-4\;mm$/cycle, and after the intersection region, fatigue crack growth rate at $-162^{\circ}C$ was faster than that at RT. The micro-fracture mechanism using SEM shows the ductile striation in the stable crack growth region. Also the defects of weld specimen after fatigue testing were detected using the A scan of ultrasonic apparatus.

압축잔류응력이 스프링강의 고온환경 피로균열 진전거동에 미치는 영향 (Effect of Compressive Residual Stress on the High Temperature fatigue Crack Propagation Behavior of Shot-peened Spring Steel)

  • 정찬기;박경동
    • 한국해양공학회지
    • /
    • 제16권5호
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, the effect of the compressive residual stresses was obtained at the test conditions of the higher temperature than the ambient temperature. The examination was performed with the CT specimen result of the material(JISG SUP9) which is being commonly used for the marine engine parts and the ocean structures. As a result, the test conditions at the higher temperature were acquired considering the peak values of the compressive residual stresses of the specimens and the effect on the fatigue crack propagation speed da/dN in stage II and the threshold stress intensity factor range Δth in stage I. Also the material constant C and the fatigue crack propagation index m in the formula of Paris Law da/dN=C (ΔK)$^{m}$ were suggested to estimate the dependence on the test temperature.

대형 기초 콘크리트의 분할타설 방법을 고려한 수화열에 의한 온도균열 제어 대책 (Thermal Crack Control Using Optimized Steps of Concrete Placement in Massive Concrete Foundation)

  • 김동규;조선규;김은겸
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1169-1174
    • /
    • 2000
  • Since the cement-water reaction in exothermic by nature, the temperature rise within a large concrete mass. Significant tensile stresses may develop from the volume change associated with the increase and decrease of the temperature with the mass concrete. There thermal stresses will cause temperature-related cracking in mass concrete structure. These typical type of mass concrete include mat foundation, bridge piers, thick wall, box type walls, tunnel linings, etc. Crack control methods can be considered at such stages as designing, selecting the materials, and detailing the construction method. Temperature and analysis was performed by taking into consideration of the cement type and content, boundary and environment conditions including the variations of atmospheric temperature and wind velocity. This is paper, the effect of separate placement of thermal crack control footing was analysed by a three dimensional finite element method. As a result, using this method, thermal crack control can be easily performed for structures such as mat structures.

  • PDF

Urea 혼입 매스콘크리트의 FEM 온도균열 해석을 위한 수화발열특성에 관한 실험적 연구 (An Experimental Study on Hydration Heat Characteristics for Thermal Crack Analysis Based on FEM of Urea Mixed Mass Concrete)

  • 문동환;장현오;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.36-37
    • /
    • 2019
  • In domestic construction industry progress, construction and quality control of large structures are considered to be important as the superstructure and mass scale of structures. In the case of mass concrete, high hydration heat caused by cement hydration generates temperature stress by generating internal temperature difference with the concrete surface. These temperature stresses cause cracks to penetrate the concrete structure. A method of lowering the heat generation by incorporating Urea in order to reduce the concrete temperature crack has been proposed. In this study, the heat function coefficient for the FEM temperature crack analysis of the mass concrete containing the element was derived and the adiabatic temperature rise test was carried out according to the incorporation of the element. As a result of this experiment, the maximum temperature of 41 ± 1℃ was obtained irrespective of the amount of urea, and the maximum temperature decreased by 16.9℃ in concrete containing 40kg/㎥ of urea.

  • PDF

SUS 304강의 하중파형에 따른 고온피로균열전파속도 및 전체하중파형의 평가방법의 연구 (A study on fatigue crack growth with loading waveform and analysis method for all loading waveform at elevated temperature in SUS 304 stainless steel)

  • 이상록;이학주;허정원;임만배
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.122-130
    • /
    • 1992
  • The effect of loading waveform on elevated temperature low-cycle fatigue crack growth behavior in a SUS 304 stainless steel have been investigated under symmetrical trangular (fast-fast), trapezoidal and asymmetrical(fast-slow, slow-fast) waveforms at 650.deg. C. It was found that the crack growth rate in fast-slow loading waveform appeared to be higher a little and the crack growth rate in slow-fast loading waveform much higer than that in fast-fast loading waveform, and difference in crack growth rate between fast-show and slow-fast waveforms nearly didn't appear in the region of da/dN>10/sup -2/ The crack growth rate in the trapezoidal loading waveform with t/sub h/=500sec appeared to be faster than that in slow(500sec)-fast(1sec). In addition, parameter modified J-integral could be considered as useful parameter for fatigue crack growth rate in all waveforms. The result obtained are as follow. da/dN=4.91*10/sup -3/ (.DELTA. J/sub c/)/sup 0.565/.

  • PDF

FRCCs의 자가센싱 임피던스 응답에 미치는 균열 발생 및 온도 변화 영향성 (Crack Initiation and Temperature Variation Effects on Self-sensing Impedance Responses of FRCCs)

  • 강명수;강만성;이한주;임홍재;안윤규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.69-74
    • /
    • 2018
  • Fiber-Reinforced Cementitious Composites (FRCCs)는 시멘트 복합체에 혼입한 전도성 섬유로 인해 전기 전도성을 가진다. 이러한 특성은 전기적 응답 계측을 통하여 별도의 센서 설치가 필요 없는 구조물의 균열 모니터링을 가능하게 한다. 하지만 전기적 응답은 균열 발생뿐만 아니라 온도의 변화에도 민감하게 변화하기 때문에 온도 요인은 전기적 응답 계측을 통한 균열 탐지를 방해하는 요소로 작용할 수 있다. 더욱이 전기적 응답을 측정하기 위한 탐침의 개수가 증가 할수록 원하지 않은 접촉 노이즈가 발생하기 때문에 이 논문에서는 탐침의 개수를 줄이기 위해 자체적인 자가센싱 임피던스 회로를 설계하였다. FRCC의 균열 발생과 온도 변화가 임피던스에 미치는 영향성은 자가센싱 임피던스 회로를 이용해 실험적으로 측정되었으며, 실험 결과, 임피던스 응답은 균열 발생보다 온도 변화에 더 민감하게 변화됨을 알 수 있었다.

교각 코핑부의 외기온도와 타설온도에 따른 수화열 해석 (Hydration Heat Analysis of Coping With Ambient and Placing Concrete Temperature)

  • 양주경
    • 한국컴퓨터산업학회논문지
    • /
    • 제9권3호
    • /
    • pp.99-104
    • /
    • 2008
  • 매스콘크리트에서 수화열에 의한 응력은 외기온도와 콘크리트의 타설온도에 따라 변하므로 이들의 영향을 고려한 해석이 필요하다. 본 연구에서는 교각의 코핑부를 대상으로 해석을 수행하여 분석하였다. 최대 인장응력은 타설 후 2.75일을 전후하여 표면 모서리부에서 발생하며 균열지수는 계속 증가하여 균열 발생 가능성은 거의 없는 것으로 나타났다. 그리고 계절에 관계없이 콘크리트의 타설온도를 낮추면 수화열에 의한 균열 발생 가능성을 줄일 수 있는 것으로 나타났다. 따라서 콘크리트를 타설하기 전에 타설온도를 낮추기 위한 여러 가지 방안을 강구하면 수화열에 의한 균열을 최소화할 수 있다.

  • PDF

SUS 316鋼 의 高溫低사이클 피勞擧動 에 미치는 粒界절出物 의 影響 (Effect of grain boundary precipitation on low-cycle fatigue behavior aat elevated temperature of SUS 316 stainless steel)

  • 오세욱;국미무;산전방박;좌등철
    • 대한기계학회논문집
    • /
    • 제4권4호
    • /
    • pp.152-159
    • /
    • 1980
  • The temperature and the grain boundary precipitation have the great influence on the low-cycle fatigue behavior of austenite stainless steel at elevated temperature. For the purpose of investigating the mechanism concerning the change of fatigue micro crack mode in SUS 316 under various conditions low-cycle fatigue test was carried out at the elevated temperature 600.deg.C, plastic strain range 2% and constant strain rate .5c.p.m. A special attention is given to the observation of intergranular crack initiation. The results obtained are summarized as follows. The low-cycle fatigue behavior of SUS 316 at 600.deg.C is affected by transition of crack initiation mode from intergranular to transgranular. The transition is due to the aging effect, which is caused by grain boundary precipitations of Cr$\_$23/C$\_$6/. Since the intergranular crack initiation is brought about by the grain boundary sliding, the transgranular crack initiates in case that the strengthening of grain boundary due to the precipitation of Cr$\_$23/C$\_$6/ carbides takes place ahead of the intergranular crack initiation.

C*에 기초한 3차원 고온균열 수명평가 (C* Based Life Assessment of 3D Crack at High Temperature)

  • 한태수;윤기봉;이형일
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.823-833
    • /
    • 2001
  • In recent years, the subject of remaining life assessment has drawn considerable attention in chemical plants, where various structural components typically operate at high temperature an pressure. Thus a life prediction methodology accounting for high temperature creep fracture is increasingly needed for the components. Critical defects in such structures are generally found in the form of semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. On this background, we first develop an auto mesh generation program for detailed 3-D finite element analyses of axial and circumferential semi-elliptical surface cracks in a piping system. A high temperature creep fracture parameter C-integral is obtained from the finite element analyses of generated 3-D models. Post crack growth module is further appended here to calculate the amount of crack growth. Finally the remaining lives of surface cracked pipes for various analytical parameters are assessed using the developed life assessment program.

다꾸찌방법을 사용한 여러변수들이 패키지균열에 미치는 신뢰도 평가 (Estimate of package crack reliabilities on the various parameters using taguchi's method)

  • 권용수;박상선;박재완;채영석;최성렬
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.951-960
    • /
    • 1997
  • Package crack caused by the soldering process in the surface mounting plastic package is evaluated by applying the maximum energy release rate criterion. It could be shown that the crack propagation from the lower edge of the ie pad is easily occurred at the maximum temperature during the soldering process, where the pressure acting on the crack surface is assumed by the saturated vapor pressure at maximum temperature. The package crack formation depends on various parameters such as chip size, relative thickness, material properties, the moisture content and soldering temperature etc. The quantitative measure of the effects of the parameters could be easily obtained by using the taguchi's method which requires only a few kinds of combinations with such parameters. From the results, it could be obtained that the more significant parameters to effect the package reliability are the orders of Young's modulus, die pad size, down set, chip thickness and maximum soldering temperature.