• 제목/요약/키워드: temperature compensation

검색결과 571건 처리시간 0.027초

W-band 레이더 수신기용 온도보상회로 설계 (Design of Temperature Compensation Circuit for W-band Radar Receiver)

  • 이동주;김완식;권준범;서미희;김소수
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.129-133
    • /
    • 2020
  • 본 논문에서는 W-대역 저잡음증폭기의 온도에 따른 이득 변동을 경감시킬 수 있는 온도보상회로를 기술하였다. 제안된 캐스코드 온도보상 바이어스회로는 공통-소스 저잡음증폭기의 게이트 바이어스를 자동으로 조절하여 소신호 이득의 변화를 억제한다. 설계된 회로는 100-nm GaAs pHEMT 공정 디자인킷으로 구현되었다. 제안된 바이어스 회로를 적용한 W-대역 저잡음증폭기의 시뮬레이션 이득값은 -35~71℃ 범위에서 20 dB 이상, ±0.8 dB 내의 변동값을 보였다. 본 논문에서 제시한 회로는 레이더용 밀리미터파 수신기에 적용되어 안정적인 성능을 낼 수 있을 것으로 기대된다.

전기저항식 변형률 게이지를 이용한 콘크리트의 열팽창계수 측정법 (Coefficient of Thermal Expansion Measurement of Concrete using Electrical Resistance Strain Gauge)

  • 남정희;안덕순;김연복
    • 한국도로학회논문집
    • /
    • 제15권6호
    • /
    • pp.25-32
    • /
    • 2013
  • PURPOSES : The purpose of this study is to provide the method of how to measure the coefficient of thermal expansion of concrete using temperature compensation principle of electrical resistance strain gauge. METHODS : The gauge factor compensation method and thermal output(temperature-induced apparent strain) correction method of self-temperature compensation gauge were investigated. From the literature review, coefficient of thermal expansion measurement method based on the thermal output differential comparison between reference material(invar) and unknown material(concrete) was suggested. RESULTS : Thermal output is caused by two reasons; first the electrical resistivity of the grid conductor is changed by temperature variation and the second contribution is due to the differential thermal expansion between gauge and the test material. Invar was selected as a reference material and it's coefficient of thermal expansion was measured as $2.12{\times}10^{-6}m/m/^{\circ}C$. by KS M ISO 11359-2. The reliability of the suggested measurement method was evaluated by the thermal output measurement of invar and mild steel. Finally coefficient of thermal expansion of concrete material for pavement was successfully measured as $15.45{\times}10^{-6}m/m/^{\circ}C$. CONCLUSIONS : The coefficient of thermal expansion measurement method using thermal output differential between invar and unknown concrete material was evaluated by theoretical and experimental aspects. Based on the test results, the proposed method is considered to be reasonable to apply for coefficient of thermal expansion measurement.

CNC공작기계의 열변형 오차보정 (II) - 알고리즘 및 시스템 인터폐이스 중심 - (Algorithm of Thermal Error Compensation for the Line Center - System Interface -)

  • 이재종;최대봉;박현구;류길상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2002
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. In this study, the compensation device and temperature-based algorithm have been implemented on the machining center in order to compensate thermal error of machine tools under the real-time. The thermal errors are predicted using the neural network and multi-regression modeling methods. In order to compensate thermal characteristics under several operating conditions, experiments performed with five gap sensors and manufactured compensation device on the horizontal machining center.

  • PDF

근적외선을 이용한 신고 배 당도판정에 있어 표면 온도영향의 보정 (Compensation of Surface Temperature Effect in Determination of Sugar Content of Shingo Pears using NIR)

  • 이강진;최규홍;김기영;최동수
    • Journal of Biosystems Engineering
    • /
    • 제27권2호
    • /
    • pp.117-124
    • /
    • 2002
  • This research was conducted to develop a method to remove the effect of surface temperature of Shingo pears for sugar content measurement. Sugar content was measured by a near-infrared spectrum analysis technique. Reflected spectrum and sugar content of a pear were used for developing regression models. For the model development, reflected spectrums having wavelengths in the range of 654 to 1,052nm were used. To remove the effect of surface temperature, special sample preparation techniques and partial least square (PLS) regression models were proposed and tested. 71 Shingo pears stored in a cold storage, which had 2$^{\circ}C$ inside temperature, were taken out and left in a room temperature for a while. Temperature and reflected spectrum of each pear was measured. To increase the temperature distribution of samples, temperature and reflected spectrum of each pear was measured four times with one hour twenty minutes interval. During the experiment, temperature of pears increased up to 17 $^{\circ}C$. The total number of measured spectrum was 284. Three groups of spectrum data were formed according to temperature distribution. First group had surface temperature of 14$^{\circ}C$ and total number of 51. Second group consisted of the first and the fourth experiment data which contained the minimum and the maximum temperatures. Third group consisted of 155 data with normal temperature-distribution. The rest data set were used for model evaluation. Results shelved that PLS model I, which was developed by using the first data group, was inadequate for measuring sugar content of pears which had different surface temperatures from 14$^{\circ}C$. After temperature compensation, sugar content predictions became close to the measured values. Since using many data which had wide range of surface temperatures, PLS model II and III were able to predict sugar content of pears without additional temperature compensation. PLS model IV, which included the surface temperatures as an independent variable. showed slightly improved performance(R$^2$=0.73). Performance of the model could be enhanced by using samples with more wide range of temperatures and sugar contents.

Long-term monitoring of ground anchor tensile forces by FBG sensors embedded tendon

  • Sung, Hyun-Jong;Do, Tan Manh;Kim, Jae-Min;Kim, Young-Sang
    • Smart Structures and Systems
    • /
    • 제19권3호
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, there has been significant interest in structural health monitoring for civil engineering applications. In this research, a specially designed tendon, proposed by embedding FBG sensors into the center king cable of a 7-wire strand tendon, was applied for long-term health monitoring of tensile forces on a ground anchor. To make temperature independent sensors, the effective temperature compensation of FBG sensors must be considered. The temperature sensitivity coefficient ${\beta}^{\prime}$ of the FBG sensors embedded tendon was successfully determined to be $2.0{\times}10^{-5}^{\circ}C^{-1}$ through calibrated tests in both a model rock body and a laboratory heat chamber. Furthermore, the obtained result for ${\beta}^{\prime}$ was formally verified through the ground temperature measurement test, expectedly. As a result, the ground temperature measured by a thermometer showed good agreement compared to that measured by the proposed FBG sensor, which was calibrated considering to the temperature sensitivity coefficient ${\beta}^{\prime}$. Finally, four prototype ground anchors including two tension ground anchors and two compression ground anchors made by replacing a tendon with the proposed smart tendon were installed into an actual slope at the Yeosu site. Tensile forces, after temperature compensation was taken into account using the verified temperature sensitivity coefficient ${\beta}^{\prime}$ and ground temperature obtained from the Korean Meteorological Administration (KMA) have been monitored for over one year, and the results were very consistent to those measured from the load cell, interestingly.

온도변화에 따른 냉장고 발포시스템용 에어믹싱가스 농도검출기술에 관한 연구 (A Study on Concentration Detection Technology of Air Mixing Gas according to Temperature Variation for Refrigerator Foam System)

  • 구영목;양준석;조상영;김민성;노춘수
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.95-100
    • /
    • 2016
  • This study proposes the temperature compensation algorithm using thermopile detector for non-dispersive infrared Nitrogen gas sensor. From the output voltage of thermistor that is attached onto the infrared detector, the ambient temperature was extracted. The effects of temperatures on the properties of sensor module characteristics of narrow bandpass filter, optical cavity and infrared lamp, and air mixing gas have been introduced in order to implement the temperature compensation algorithm.

Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy

  • 이진현;이재하;양성한
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1482-1489
    • /
    • 2001
  • Thermally-induced errors originating from machine tool errors have received significant attention recently because high speed and precise machining is now the principal trend in manufacturing proce sses using CNC machine tools. Since the thermal error model is generally a function of temperature, the thermal error compensation system contains temperature sensors with the same number of temperature variables. The minimization of the number of variables in the thermal error model can affect the economical efficiency and the possibility of unexpected sensor fault in a error compensation system. This paper presents a thermal error model with minimum number of variables using a fuzzy logic strategy. The proposed method using a fuzzy logic strategy does not require any information about the characteristics of the plant contrary to numerical analysis techniques, but the developed thermal error model guarantees good prediction performance. The proposed modeling method can also be applied to any type of CNC machine tool if a combination of the possible input variables is determined because the error model parameters are only calculated mathematically-based on the number of temperature variables.

  • PDF

온도보상회로를 부착한 개방형 전류측정기의 특성 (Characteristics of Open-Loop Current Sensor with Temperature Compensation Circuit)

  • 구명환;박주경;차귀수;김동희;최종식
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8306-8313
    • /
    • 2015
  • 개방형 전류측정기는 DC 모터 콘트롤러, AC 가변 콘트롤러, UPS(Uninterruptible Power System)에 주로 사용되며 최근 신재생 에너지의 성장과 전력망의 스마트 그리드화로 인하여 활용성이 점차 확대되고 있다. 이러한 신재생 에너지의 성장으로 관련 핵심기술의 보유여부가 중요해지고 있으며 대부분 수입에 의존하고 있는 개방형 전류측정기의 국산화 및 관련 기술의 확보를 필요로 한다. 본 논문에서는 일반 산업용 개방형 전류측정기의 제작과정과 특성을 측정한 결과를 기술하였다. 개방형 전류측정기를 구성하는 C형 철심의 공극자장분포 해석 및 형상 설계, 홀센서의 선정 및 특성시험, 정전류 전원공급회로와 신호처리회로의 회로설계 과정을 기술하며 DIP(Dual In-line Package) type과 SMD (Surface Mount Device) type의 100A급 개방형 전류측정기를 제작하고 특성을 측정했다. 제작된 전류측정기로 0~100A 범위에서 통전 실험을 실시한 했고 직류전류와 60Hz의 교류전류에서 특성을 측정한 결과 정밀도 오차 2% 이내, 선형도 오차 2% 이내의 성능을 만족하였다. 또한 부 특성 온도계수를 갖는 NTC(Negative Temperature Coefficient) 서미스터를 이용한 온도보상회로를 사용하여 $-35{\sim}100^{\circ}C$의 범위에서 온도보상 효과를 확인하였다.

초정밀스테이지의 위치결정정도 향상에 관한 연구 (A Study on the Improvement of Positioning accuracy of ultra-precision stage)

  • 황주호;송창규;박천홍;이찬홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.465-468
    • /
    • 2001
  • An aerostatic stage has frictionless behavior, so it has a advantage of investigation into positioning characteristics. A one-dimensional aerostatic ceramic stage with ballscrew driven and laser scale feedback system is manufactured, aiming at investigating positioning characteristic of ultra-precision stage. We confirm, this ceramic aerostatic stage has a 10nm micro resolution, and can be reduced mean of position error by compensation of numeric control command. By means of analyzing relationship of position error and change of temperature, we build a on-line compensation algorithm of position error from the measured temperature data. So we can improve repeatability of ultra-precision stage up to 34%($0.095{\mu}$) of the normal condition.

  • PDF

공작기계 열변형 보정을 위한 발열실험 방법에 관한 연구 (A Study on the Thermal Experiment for the Compensation of Thermal Deformation in Machine Tools)

  • 윤인준;김형식;고태조;김희술
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Thermal distortion is a critical issue in machine tools, especially in high speed machining. This is the reason why recent machine tools have thermal compensation function. To compensate thermal distortion, it is necessary to make a model that has some relationship between temperature and deformation. Various experimental methods ye widely been used in thermal test: constant spindle speed, unit step speed increase, random spindle speed, etc. This paper focuses on which type of spindle operation condition is good for thermal experiment. Also, experimental data is modeled using multiple linear regression models and compared each other to select a method. Consequently, it turned out at e condition of 75% constant of maximum spindle speed is good enough to generate temperature and distortion data.