• Title/Summary/Keyword: temperature compensation

Search Result 575, Processing Time 0.024 seconds

Meteorological Constraints and Countermeasures in Major Summer Crop Production (하작물의 기상재해와 그 대책)

  • Shin-Han Kwon;Hong-Suk Lee;Eun-Hui Hong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.398-410
    • /
    • 1982
  • Summer crops grown in uplands are greatly diversified and show a large variation in difference with year and location in Korea. The principal factor for the variation is weather, in which precipitation and temperature play a leading role and such a weather factors as wind, sun lights also influence production of the summer crops. Since artificial control of weather conditions as a main stress factor for crop production is almost impossible, it must be minimized only by an improvement of cultivation techniques and crop improvement. Precipitation plays a role as one of the most important factor for production of the summer crops and it is considered in two aspects, drought and excess moisture. This country, which belongs to monsoon territory, necessarily encounter one of this stress almost every year, even though the level is different. Therefore, the facilities for both drought and excess moisture are required, but actually it is not easy to complete for them. On this account, crops tolerant to drought, excess moisture and pests should be considered for establishing summer crops. For the districts damaged habitually every season, adequate crops should be cultured and appropriate method of planting, drainage and weed control should be applied diversely. Injuries by temperature is mainly attributed to lower temperature particularly in late fall and early spring, although higher temperature often causes some damages depending upon the kind of crops. Sometimes, lower temperature in summer season playa critical role for yield reduction in the summer crops. However, certain crops are prevented to some extent from this kind of stress by improving varieties tolerant to cold, hot weather or early maturing varieties. As is often the case, control of planting time or harvesting is able to be a good management for escaping the stress. Lodging, plant diseases and pests are considered as a direct or indirect damage due to weather stress, but these are characters able to be overcome by means of crop improvement and also controlled by other suitable methods. In addition, polytical supports capable of improving constitution of agriculture into modern industry is urgently required by programming of data for the damages, establishment of damage forecasting and compensation system.

  • PDF

Growth Characteristics on the Water Temperature, Salinity and Irradiance of the harmful Algae Chattonella ovata Y. Hara et Chihara(Raphidophyceae) Isolated from South Sea, Korea (한국 남해에서 분리한 유해 침편모조류 Chattonella ovata Y. Hara et Chihara의 수온, 염분 및 광량에 대한 성장특성)

  • Noh, Il-Hyeon;Yoon, Yang-Ho;Kim, Dae-Il;Oh, Seok-Jin;Kim, Jong-Deok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.140-147
    • /
    • 2010
  • We investigated the effects of water temperature, salinity and irradiance on the growth of the harmful algae Chattonella ovata isolated from South Sea, Korea. C. ovata grew under all combinations of water temperatures and salinity, except for all the salinity conditions at the water temperature of $10^{\circ}C$, with the salinity of 7.5 psu and 10 psu at $15^{\circ}C$, and 7.5 psu at $20^{\circ}C$ and $30^{\circ}C$. The maximum specific growth rate was $0.62\;day^{-1}$ at the combination of $30^{\circ}C$ and 30 psu. The results of two-way ANOVA indicated that growth rate depended greatly on the water temperatures while not being affected by interactions with the salinity. This indicates that C. ovata is a stenothermal and euryhaline organism, preferring high water temperatures. C. ovata did not grow at irradiance ${\leq}30\;{\mu}mol$ photons $m^{-2}s^{-1}$. Photoinhibition did not occur at $800\;{\mu}mol$ photons $m^{-2}s^{-1}$, which was the maximum irradiance used in this study. The irradiance-growth curve was described as $\mu$ = 0.74(I-16.0)/(I+43.9) at $30^{\circ}C$ and 30 psu. The half-saturation light intensity ($K_s$) was $75.9\;{\mu}mol$ photons $m^{-2}s^{-1}$ and compensation photon flux density ($I_c$) was $16.0\;{\mu}mol$ photons $m^{-2}s^{-1}$, especially this value was comparatively lower than those of Skeletonema costatum and other flagellates previously reported. Therefore, our results indicate that C. ovata has advantageous physiological characteristics for interspecific competition at the embayment and coastal areas of Korea in summer.

Evaluation of Factors Related to Productivity and Yield Estimation Based on Growth Characteristics and Growing Degree Days in Highland Kimchi Cabbage (고랭지배추 생산성 관련요인 평가 및 생육량과 생육도일에 의한 수량예측)

  • Kim, Ki-Deog;Suh, Jong-Taek;Lee, Jong-Nam;Yoo, Dong-Lim;Kwon, Min;Hong, Soon-Choon
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.911-922
    • /
    • 2015
  • This study was carried out to evaluate growth characteristics of Kimchi cabbage cultivated in various highland areas, and to create a predicting model for the production of highland Kimchi cabbage based on the growth parameters and climatic elements. Regression model for the estimation of head weight was designed with non-destructive measured growth variables (NDGV) such as leaf length (LL), leaf width (LW), head height (HH), head width (HW), and growing degree days (GDD), which was $y=6897.5-3.57{\times}GDD-136{\times}LW+116{\times}PH+155{\times}HH-423{\times}HW+0.28{\times}HH{\times}HW{\times}HW$, ($r^2=0.989$), and was improved by using compensation terms such as the ratio (LW estimated with GDD/measured LW ), leaf growth rate by soil moisture, and relative growth rate of leaf during drought period. In addition, we proposed Excel spreadsheet model for simulation of yield prediction of highland Kimchi cabbage. This Excel spreadsheet was composed four different sheets; growth data sheet measured at famer's field, daily average temperature data sheet for calculating GDD, soil moisture content data sheet for evaluating the soil water effect on leaf growth, and equation sheet for simulating the estimation of production. This Excel spreadsheet model can be practically used for predicting the production of highland Kimchi cabbage, which was calculated by (acreage of cultivation) ${\times}$ (number of plants) ${\times}$ (head weight estimated with growth variables and GDD) ${\times}$ (compensation terms derived relationship of GDD and growth by soil moisture) ${\times}$ (marketable head rate).

Photosynthetic Characteristics and Chlorophyll Content of Rhododendron micranthum by the Natural Habitat (자생지에 따른 꼬리진달래의 광합성 특성 및 엽록소 함량)

  • Kim, Nam-Young;Lee, Kyeong-Cheol;Han, Sang-Sub;Lee, Hee-Bong;Park, Wan-Geun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2012
  • This study was conducted to investigate the photosynthetic R. micranthum by natural habitats. In the results, natural habitats didn't affect values of light saturated point, light compensation point and photosynthetic capacity of R. micranthum. We investigated light response curve and chlorophyll content at each habitat. Light compensation points were 11.8 ${\mu}mol\;m^{-2}\;s^{-1}$, 11.5 ${\mu}mol\;m^{-2}\;s^{-1}$ and 10.4 ${\mu}mol\;m^{-2}\;s^{-1}$ in Seokpo-ri, Yeonha-ri, and Mt. Worak. Light saturation points showed that R. micranthum is shade tolerant specie which has the light saturation point approximately 500~600 ${\mu}mol\;m^{-2}\;s^{-1}$. Photosynthetic rates of R. micranthum leaves were 5.5 ${\mu}mol\;m^{-2}\;s^{-1}$, 5.4 ${\mu}mol\;m^{-2}\;s^{-1}$ and 5.6 ${\mu}mol\;m^{-2}\;s^{-1}$ in Seokpo-ri, Yeonha-ri and Mt. Worak. On the other hand, since between $20^{\circ}C$ and $30^{\circ}C$, it appeared that the values of net photosynthetic rates of R. micranthum leaves in all sites were high. Especially, the rates were highest at $25^{\circ}C$. Because of low stomatal transpiration rate in saturation radiance, the moisture utilization efficiency in Yeonha-ri was lower than other habitats. Rates of chlorophyll a, chlorophyll b, and total chlorophyll content in Mt. Worak were no significant difference. Therefore R. micranthum has characteristic of shade tolerant species. The moderate temperature for R. micranthum is between $20^{\circ}C$ and $30^{\circ}C$.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperature Forest Zone of Korea (II) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態學的) 연구(硏究) (II))

  • Yim, Kyong Bin;Lee, Kyong Jae;Park, In Hyeop
    • Journal of Korean Society of Forest Science
    • /
    • v.54 no.1
    • /
    • pp.49-59
    • /
    • 1981
  • In order to elucidate the process of plant succession of the Japanese red pine forests caused by pine gall midge, Thecodoplosis japonensis, in the area of Chungbuk and Kyongbuk, 12 study plots, 4 plots from each three districts, were set up. Districts A (Cheongwon)not attacked by this insect, as the check, District B(Gumi) in which the insect outbreak occured 5 years ago, and District C(Yeongdong)in which the insect outbreak occured 10 years ago, were sampled. The surveyed were some environmental factors, the number of woody plants, relative density, relative dominance values, species composition of plots by layer(upper, middle and ground), importance values, species diversity, similarity and dissimilarity index, etc. The results obtained are summarized as follows: The accumulation of litter on the ground was increased with the lengthening the insect damage duration. Through the crown opening and litter accumulation, the light intensity, temperature condition and soil moisture and nutrient content might be altered. According to the changes of species composition were forced. In general, the Genus Quercus, as a compensation species, has sprung up. The relative importance values for Q.aliena, Q.serrata, and Q.variabilis were significantly increased in the insect infested forests. 2. the stand structure and species composition of the insect attacked forest about 5 years later after the outbreak become complex and diverse. However, since this time, the simplicity of these regards become restored up to 10 years after the outbreak. 3. As the synthetic analysis of plant succession process, the relative values calculated from the relative density and the relative dominance values shown the dominant status of Genus Quercus in the heavily damaged forests. In addition, Genus Rhododendron and Genus Lespedeza with higher frequency become the ground vegetation components. They were gradually increased along the time elapsing after the insect out-break. 4. The differences in connection with the soil moisture contents, the organic matter contents which might give some influences to the vegetation change were hardly recognizable statistically among the studied plots by three district groups. We estimated that the annual mean precipitation and the annual mean temperature did not operated any meaningful effects on the vegetation alteration among plots between districts.

  • PDF

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

A Study for the Effect of Solvent and Temperature on the Retention Behavior of Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀류의 머무름거동에 미치는 용매와 온도의 영향에 관한 연구)

  • Lee Dai Woon;Lee Hoo Keun;Yook Keun Sung;Lee, In Ho;Cho Byung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.503-512
    • /
    • 1993
  • The purpose of this study was to investigate the retention behavior of phenols and to predict their retention in RPLC. The retention data of twenty-five phenols were measured on a $\mu-{Bondapak}\;C_{18}$ and a polymeric $C_{18}$ columns with methanol-water and acetonitrile-water as a mobile phase. From the observation of enthalpy-entropy compensation phenomenon, the following conclusions are drawn with regard to the retention mechanism: 1) the retention mechanism of nitrophenols in different from that of metheyl-and chlorophenols in both mobile phase; 2) in methanol-water mobile phase, the retention mechanism of methyl-and chlorophenols is consistent in the range of methanol-water composition; 3) on the other hand, in the case of acetonitrile-water mobile phase, the retention mechanism depends on the volume fraction of acetonitrile. It means that the retention mechanism can not be explained only by a simple interaction. Based on retention data as compared with two columns, it may be said that the hydrophobic interaction of phenols with polymeric $C_{18}$ column was greater than that with monomeric $C_{18}$ column. The equations for predicting the retention of phenols were derived by using hydrophobic substituent constant $(\pi)$ and the sum of Hammett's constant $(\sigma)$ and Taft's steric constant $(E_s)$.

  • PDF

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

Effects of Oxygen Vacancies on the Electrical Properties of High-Dielectric (Ba,Sr)TiO$_3$Thin Films (산소 결핍이 고유전 BST 박막에 미치는 영향)

  • 김일중;이희철
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.63-69
    • /
    • 1999
  • The electrical properties of rf-magnetron sputtered $Ba_{0.5}Sr_{0.3}TiO_3$ (BST) capacitors were investigated by varying annealing temperature and atmosphere of the rapid thermal annealing (RTA). The electrical properties of Pt/BST/Pt capacitors were found to strongly depend on the RTA condition. It seems that the dependence of the electrical properties of the Pt/BST/Pt capacitors on the RTA condition is related to the oxygen vacancies in BST thin films. In order to clarify the relation between the oxygen vacancies and the electrical properties of Pt/BST/Pt capacitors, we have examined the two different annealing methods. One annealing method was performed in $O_2$ gas and the other was done in $O_2$-plasma at the same condition of 450$^{\circ}C$, 20 mtorr. It was found that the leakage current densities of $O_2$-plasma annealed capacitor were much lower than those of $O_2$ annealed capacitor. The dielectric constants of $O_2$ annealed capacitor decreased about 14% comparing with those of as-deposited. In contrast, there was no decrease in the dielectric constant of $O_2$-plasma annealed. These results indicate that $O_2$-plasma annealing is very effective in compensation the oxygen vacancies in BST thin films. It can be also concluded that the oxygen vacancies greatly affect the electrical properties of Pt/BST/Pt capacitors.

  • PDF

Thermoelectric properties of SiC prepared by refined diatomite (정제 규조토로 합성한 탄화규소의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.596-601
    • /
    • 2020
  • Silicon carbide is considered a potentially useful material for high-temperature electronic devices because of its large band gap energy and p-type or n-type conduction that can be controlled by impurity doping. Accordingly, the thermoelectric properties of -SiC powder prepared by refined diatomite were investigated for high value-added applications of natural diatomite. -SiC powder was synthesized by a carbothermal reduction of the SiO2 in refined diatomite using carbon black. An acid-treatment process was then performed to eliminate the remaining impurities (Fe, Ca, etc.). n-Type semiconductors were fabricated by sintering the pressed powder at 2000℃ for 1~5h in an N2 atmosphere. The electrical conductivity increased with increasing sintering time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The carrier compensation effect caused by the remaining acceptor impurities (Al, etc.) in the obtained -SiC had a deleterious influence on the electrical conductivity. The absolute value of the Seebeck coefficient increased with increasing sintering time, which might be due to a decrease in the stacking fault density accompanied by grain or crystallite growth. On the other hand, the power factor, which reflects the thermoelectric conversion efficiency of the present work, was slightly lower than that of the porous SiC semiconductors fabricated by conventional high-purity -SiC powder, it can be stated that the thermoelectric properties could be improved further by precise control of an acid-treatment process.