• Title/Summary/Keyword: temperature calibration

Search Result 515, Processing Time 0.024 seconds

A Study on Measuring the Temperature and Revising the Result When Measuring the Temperature of NPP Pipes Using Infrared Thermography (적외선 열화상 기술을 이용한 원자력 배관의 온도측정과 보정에 관한 연구)

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Pack, Chan-Joo;Kim, Dong-Soo;Jung, Duk-Woon;Chang, Ho-Sub
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.421-426
    • /
    • 2009
  • The emissivity is different because the emitted angle changes according to the position of the infrared thermography camera and object. Because of this, the temperature distribution expressed when measuring the temperature by using the infrared thermography system is not the accuracy temperature. Although the real surface temperature is constant, the temperature measured by using infrared thermography camera have error in accordance with the value of emissivity. In this paper, the temperatures of the round cylindrical object and the flat square object that heated to the equal temperature were measured by infrared thermography camera. The emissivity calibration formula and correction table are made with the affect of the view angle and emission angle form the surface temperature value. The error of measured temperature values are corrected by using the emissivity calibration formula and correction table, and apply to defect detection of the nuclear power plant pipe. From the calibration method, reliability surface temperature values were obtained.

The Development of the Calibration Method of Building Energy Consumption by HDDm and CDDm (냉·난방도일에 따른 건물에너지 사용량 보정기법 개발)

  • Kim, Dongi;Lee, Byeongho
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.6
    • /
    • pp.15-26
    • /
    • 2018
  • It is difficult to check the exact building energy consumption reduction such as when green remodeling of buildings, because it is due to outdoor air temperature over the years. And in Korea although Big Data of building energy consumption is collected and managed through "The Information System of the Building Energy and Greenhouse Gases" it is underutilized because of non calibration of outdoor air temperature change. Therefore, this study aims to develope calibration method of building energy consumption by outdoor air temperature according to micro climates, and building use types. As a result of analysis, Regression equations of Building energy consumption and $HDD_m/CDD_m$ are derived and calibration method is developed by Regression coefficient.

CALIBRATION ISSUES OF SPACEBORNE MICROWAVE RADIOMETER DREAM ON STSAT-2

  • Singh, Manoj Kumar;Kim, Sung-Hyun;Chae, Chun-Sik;Lee, Ho-Jin;Park, Jong-Oh;Sim, Eun-Sup;Zhang, De-Hai;Jiang, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.398-401
    • /
    • 2006
  • Dual channel Radiometer for Earth and Atmospheric Monitoring (DREAM) is the main payload on Science and Technology SATellite-2 (STSAT-2) of Korea. DREAM is two-channel microwave radiometer with linear polarization, and operating at center frequencies of 23.8 GHz and 37 GHz. An equation for DREAM calibration is derived which accounts for losses and re-radiation in the microwave components of the radiometer due to physical temperature. This paper describes the radiometric calibration equation to get antenna temperature ($T_A$) from the measured output data. At lower altitude, the measured deep space temperature is contaminated by middle atmosphere and earth radiation. In this paper, we presented the detail mathematical formulation to find the altitude up to which cold source brightness temperature is not affected by earth and middle atmosphere radiation. The DREAMPFM data is used to calculate the performance parameters (linearity, sensitivity, dynamic range, and etc.) of the system.

  • PDF

Temperature Calibration of a Specimen-heating Holder for Transmission Electron Microscopy

  • Kim, Tae-Hoon;Bae, Jee-Hwan;Lee, Jae-Wook;Shin, Keesam;Lee, Joon-Hwan;Kim, Mi-Yang;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • The in-situ heating transmission electron microscopy experiment allows us to observe the time- and temperature-dependent dynamic processes in nanoscale materials by examining the same specimen. The temperature, which is a major experimental parameter, must be measured accurately during in-situ heating experiments. Therefore, calibrating the thermocouple readout of the heating holder prior to the experiment is essential. The calibration can be performed using reference materials whose phase-transformation (melting, oxidation, reduction, etc.) temperatures are well-established. In this study, the calibration experiment was performed with four reference materials, i.e., pure Sn, Al-95 wt%Zn eutectic alloy, NiO/carbon nanotube composite, and pure Al, and the calibration curve and formula were obtained. The thermocouple readout of the holder used in this study provided a reliable temperature value with a relative error of <4%.

A Study on the SDINS's Gyro Bias Calibration Method in Disturbances (외란을 고려한 스트랩다운 관성항법장치 자이로 바이어스 교정기법)

  • Lee, Youn-Seon;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.368-377
    • /
    • 2009
  • In this paper we study the gyro bias calibration method of SDINS(Strap-Down Inertial Navigation System). Generally, SDINS's calibration is performed in 2-axis(or 3-axis) rate table with chamber for varying ambient temperature. We assumed that the majority of calibration-parameter except for gyro bias is knowned. During gyrobias calibration procedure, it can be induced some disturbances(accelerometer's short-term error induced rate table rotation and anti-vibration mount's rotation). In these cases, old gyro-bias calibration methods(using velocity error or attitude error) have an error, because these disturbances are not detectable at the same time. So that, we propose a new gyro-bias calibration method(heading error minimizing using equivalent linear transformation) that can detect anti-vibration mount's rotation. And we confirm efficiency of the new gyro-bias calibration method by simulation.

Measurement of Traceability Error for Calibration Service Center Using Type S Thermocouples (S형 열전대를 이용한 교정검사기관의 소급성 오차측정)

  • Gam, Kee-Sool;Kim, Yong-Gyoo;Kim, Sun-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 1995
  • We measured the traceability error for nine high temperature calibration service centers including KRISS through the round-robin test. In this test the type S thermocouple, which used as a calibration standard thermometer commonly, was accommodated as a test thermocouple. Intercomparison data of three institutions were coincident with KRISS's data within ${\pm}0.5^{\circ}C$, which was the calibration uncertainty of the type S thermocouple, but the remaining six institution's data were deviated from the assigned uncertainty level. Deviation of the intercomparison data increased gradually according to the increase of the test temperature. and the maximum difference was so large as about $2.0^{\circ}C$ at the highest test temperature, gold point. In this study we found the traceability error of high temperature calibration service center for a high temperature standard was within $2.0^{\circ}C$.

  • PDF

Development of Temperature Sensor Calibration System Using Cryocooler (극저온 냉동기를 이용한 온도센서 교정시스템 개발)

  • Kim, Myung Su;Choi, Yeon Suk;Kim, Dong Lak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.87-93
    • /
    • 2013
  • The selection of the temperature sensor in a cryogenic system depends on the temperature range, shape, and accuracy. An accurate temperature sensor is essential for improving the reliability of an experiment. We have developed a calibration system for cryogenic temperature sensors using a two-stage cryocooler. To reduce the heat load, a thermal shield is installed at the first stage with multiple layer insulation (MLI). We have also developed a sensor holder for calibrating more than 20 sensors simultaneously in order to save time and reduce costs. This system can calibrate sensors at variable temperatures via temperature control using a heater. In this paper, we present the design and fabrication of the temperature sensor calibration system and a representative experimental result.

Calibration of Thermistors for Precision Temperature Measurements (정밀온도측정을 위한 서미스터 교정)

  • Gam, Kee-Sool;Kim, Yong-Gyoo;Yang, In-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.329-335
    • /
    • 2011
  • We demonstrated that high-stability thermistors can be calibrated with an uncertainty less than 1 mK, if the error due to the heat conduction is minimized. We first investigated the effect of the self-heating of typical thermistor probes to see how accurate we need to determine the effect of self-heating. We, then, calibrated thermistors and fitted the results using various modeling equations. We found out that the heat conduction is an important factor in achieving the calibration uncertainty under 1 mK for thermistors when the diameter of the probe is as thick as 10 mm. Therefore, we controlled the room temperature within $0.5^{\circ}C$ to minimize the heat conduction error during the calibration. The calibration with an uncertainty below 1 mK was possible when the stabilization time for each calibration was long enough to obtain a good thermal equilibrium.

Development of Frost Thickness Measurement Method Using Optical Technique (광학적 기법에 의한 Frost 두께 측정방법의 개발)

  • Jeong, Jae-Hong;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.654-659
    • /
    • 2001
  • A new non-contact method of the frost thickness measurement has been developed. The method is based on the digital image processing technique to identify the reflection edge of the image captured by a CCD camera under laser sheet light illumination. To insure the accuracy of frost layer thickness, an in-situ calibration procedure is carried out with a calibration target with 0.5mm holes. Using the mapping function obtained by the calibration procedure, the contour of frost surface can be estimated with sub-pixel resolutions. The developed method is applied to study the effect of cooling plate temperature on the frost thickness in a small low speed wind tunnel.

  • PDF

Fabrication of Millimeter Wave Radiometer (밀리미터파 복사계의 제작)

  • Kim, Soon-Koo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.71-74
    • /
    • 2012
  • We have manufactured a close range Dicke type radiometer which consists of two stage low noise amplifier and diode detector. Frequency range of this system is 35 GHz. And this is used for studying temperature calibration on specific objects. We have present millimeter-wave radiometer's thermal calibration method and its characteristics. From absolute temperature 299K to 309K, in proportion to increase temperature, output voltages are linearly increased. In this case, undefined objects can be measured thermal noise temperature relatively. Overall from absolute temperature 214K to 309K, we have obtained relation of temperature and output voltage;V= 0.03601K - 10.70517.