• Title/Summary/Keyword: temperature and humidity chamber

Search Result 238, Processing Time 0.027 seconds

Design Principals of High Altitude Environmental Test Chamber (고도모사 환경챔버 개념 설계)

  • Owino, George;Gong, Chang-Deok;Choe, Gyeong-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.403-406
    • /
    • 2009
  • This research is based on the altitude temperature, pressure and humidity, as defined by MIL-HDBK-310 standard and modifies this conditions to conform to the new standard MIL-STD-810F and test procedure given in AIAA-2466 from this fundamental guideline optimal design and sizing of test section, inlet, exhauster duct, temperature and humidity control was performed.

  • PDF

Theoretical and Experimental Considerations of Thermal Humidity Characteristics

  • Choi, Seok-Weon;Cho, Ju-Hyeong;Seo, Hee-Jun;Lee, Sang-Seol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 2002
  • Thermal humidity characteristics were considered theoretically and experimentally. A Simply well-fitted correlation of a saturated vapor pressure-temperature curve of water was introduced based on Antoine equation to make theoretical prediction of relative humidity according to temperature variation. Characteristics of dew point were also examined theoretically and its relation with temperature and humidity was evaluated. The exact mass of water vapor in a specified humidity and temperature condition was estimated to provide useful insight into the idea about how much amount of water corresponds to a specified humidity and temperature condition in a confined system. A simple but well-fitting model of dehumidification process was introduced to anticipate the trend of relative humidity level during GN2(gaseous nitrogen) purge process in a humidity chamber. Well-suitedness of this model was also verified by comparison with experimental data. The overall appearance and specification of two thermal humidity chambers were introduced which were used to perform various thermal humidity tests in order to yield useful data necessary to support validity of theoretical models.

A Study on Modelling for Prediction of Concrete Drying Shrinkage according to Aggregate Ratio of Concrete (잔골재율 변화에 따른 콘크리트 건조수축 모델링에 관한 연구)

  • Park, Do-kyong;Yoon, Yer-Wan;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2004
  • Drying Shrinkage has much complexity as it has relations with both internal elements of concrete and external factors. Therefore, experiments on Concrete Drying Shrinkage are carried out in this study under simplified circumstances applying temperature & Humidity test chamber which enables constant temperature and humidity. Comparative analyses have been made respectively according to the consequences aiming at modelling for prediction of Concrete Drying Shrinkage and making out measures to reduce it. Strain Rate of Drying Shrinkage of concrete under the condition of dry air appears to rise by about 20%-30% in proportion as the temperature rises $5^{\circ}C$ when the humidity was held below 10% compared under the condition of dry temperature & Humidity test chamber. Strain Rate of Drying Shrinkage in pit sand concrete increased 20% higher than measured when in river sand under the condition of 90-day material age. A general formula with two variables is derived as follow ${\varepsilon}={\alpha}_1+{\beta}_1x_1+{\beta}_2x_2+{\beta}_3x_1^2+{\beta}_5x_2^2$. and also graphed in 3 dimensions, enabling to apply to actual design and predict Strain Rate of Drying Shrinkage in concrete. The results of prediction of Rate of Drying Shrinkage by Response Surface Analysis are as follows. The coefficient of correlation of Drying Shrinkage in Concrete was over 90%.

Measurement of Mechanical Properties and Constitutive Modeling of Woods (목재 물성 측정 및 변형 예측 모델 개발)

  • Kim, K.W.;Kim, D.H.;Kim, M.S.;Ko, Y.J.;Ha, B.K.;Kim, H.S.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.363-369
    • /
    • 2018
  • This study measured the mechanical properties of an ash wood under various temperature and humidity conditions and a finite element model was developed to predict the behavior of the wood. A humidity-controlled chamber was developed and used for measuring the dimensional changes of woods under various humidity conditions. The thermal expansion coefficient and the elastic stiffness constants were measured by using a thermal chamber and the three-point bending test along the three principal axes of the wood. A constitutive model was proposed to describe the moisture content and temperature dependent behavior of wood. The proposed model was validated for the warping test of a wood plate. The warping of the plate was calculated using the finite element method. The calculated amount of warping was in consistence with the measurements.

Assessment of Evaporation Rates from Litter of Duck House (오리사 바닥재의 수분 증발량 평가)

  • Lee, Sang-Yeon;Lee, In-Bok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Decano, Cristina;Kim, Jun-gyu;Choi, Young-Bae;Park, You-Me;Jeong, Hyo-Hyeog
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.101-108
    • /
    • 2019
  • The domestic duck industry is the sixth-largest among the livestock industries. However, 34.3% of duck houses were the duck houses arbitrarily converted from plastic greenhouses. This type of duck house was difficult to properly manage internal air temperature and humidity environment. Humidity environment inside duck houses is an important factor that directly affects the productivity and disease occurrence of the duck. Although the humidity environments of litters (bedding materials) affect directly the inside environment of duck houses, there are only few studies related to humidity environment of litters. In this study, evaporation rates from litters were evaluated according to air temperature, relative humidity, water contents of litters, and wind speed. The experimental chamber was made to measure evaporation rates from litters. Temperature and humidity controlled chamber was utilized during the conduct of the laboratory experiments. Using the measured data, a multi linear regression analysis was carried out to derive the calculation formula of evaporation rates from litters. In order to improve the accuracy of the multi linear regression model, the partial vapor pressure directly related to evaporation was also considered. Variance inflation factors of air temperature, relative humidity, partial vapor pressure, water contents of litters, and wind speed were calculated to identify multicollinearity problem. The Multiple $R^2$ and adjusted-$R^2$ of regression model were calculated at 0.76 and 0.71, respectively. Therefore, the regression models were developed in this study can be used to estimate evaporation rates from the litter of duck houses.

Internal communication as CCTV Automatic Climate Control System Development (CCTV통신용 함체내의 항온항습 자동제어 장치 개발)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.433-439
    • /
    • 2015
  • Enclosures for CCTV internal short circuit are prevented due to wetting to maintain a constant humidity and temperature, to avoid condensation due to temperature difference, a constant temperature and humidity requirements of the equipment, such as high-temperature resistant and a constant temperature of the structure, degree of energy utilization is optimized for developing this corresponding housing automatic control system and humidity is required. Device being an expensive imaging equipment in side of the enclosure according to the temperature conversion from a hazard protection, there is a need for a constant temperature and humidity control apparatus that can prevent a short-circuit failure. This is a system in which the accessory device is absolutely required for the storage and transmission of an image in recording reliability and field conditions.

Evaluation of impact factors on emission rate of formaldehyde from MDF based on chamber tests (챔버실험을 통한 MDF에서의 포름알데히드 방출의 영향인자 평가)

  • Yoo, Bok-Hee;Kim, Gi-In
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.204-207
    • /
    • 2009
  • The purpose of this study was to evaluation of impact factors, which are temperature and relative humidity on formaldehyde emission from MDF(Medium Density Fiberboard). The test was carried out at 4 specimens that were different of temperature and humidity by using small chamber system. Formaldehyde was sampled and analyzed by HPLC. The results of this study were as follows; 1) When the temperature increased from 25 to $35^{\circ}C$ at 50%, the emission rate of formaldehyde increased 1.0-1.6 times. 2) When the RH increased from 50% to 80% at $25^{\circ}C$, the emission rate of formaldehyde decreased 0.6 times. 3) The enhancement effect of temperature on Formaldehyde under RH of 50% was more significant than under RH of 80%.

  • PDF

Development of a Fully-Controlled Phytotrons -Temperature and Humidity Control System- (완전제어형(完全制御型) 실험용(實驗用) 작물생육장치(作物生育裝置)의 개발(開發)(I) -온(溫)·습도(濕度) 제어(制御) 시스템-)

  • Lee, K.C.;Ryu, K.H.;Noh, S.H.;Hong, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 1992
  • The aim of this study was to develop a phytotron for studying the effects of environmental factors such as temperature and humidity on plant growth. This equipment consists of the growth chamber, and the measurement and control system including control algorithms required for optimum operation. As the first step of the study, a temperature and humidity control system was developed. The results of this study are summarized as follows ; 1. Pt-100 was selected to measure temperature and a linearized op-amp circuit was developed for signal conditioning. 2. Pt-100 wet bulb thermometer based on Asmann's principle was developed to measure relative humidity. 3. Temperature and relative humidity conditions were controlled by ON-OFF and PWM operation using a PID controller. And an autotuning algorithm using the characteristics of step response was developed to determine optimal PID constants which were independent of the size of apparatus and environmental factors. 4. Under the ambient temperature of $20^{\circ}C{\sim}25^{\circ}C$, the temperature was kept within the error of ${\pm}0.3^{\circ}C$ in the range of $10^{\circ}C{\sim}40^{\circ}C$, and the relative humidity was kept within the error of ${\pm}5%$ in the range of ${\pm}50%{\sim}90%$.

  • PDF

Study on The Water Requirements of Chinese Cabbage. (배추 용수량에 관한 연구)

  • 김현철;정두호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3430-3437
    • /
    • 1974
  • .It is very importaut to know the water consumption of crops in planning irrigation works and practicing suitable soil moisture management. For the purpose of making it clear that how much water be consumed to cultivate the Chinese cabbage, Chamber method has been applied. Main equipments in the transpiration chamber are flowers, manometer and electric thermograph. The chamber made of vynyl plate has a small entrance at the base and an exit at the top, and the ventilation in the chamber was carried out by a flower through the entrance and exit. Air-flow adjusted by an orifice manometer enters the chamber from the outside over the crop canopy through the pipe like a chimney and finally goes out to the outside. Two sets which consist of a pair of dry and wet bulb made by thermistor are installed in the entrance and exit tube, and record air temperature automatically. Evapotranspiration amount is computed from the air-flow quantity and difference in absolute humidity between at the entrance and exit of the chamber by the following equation: ET=(X2-X1)${\times}$Q where ET=evapotranspiration amount X1=absolute humidity at the entrance(g/㎥) X2=absolute humidity at the exit(g/㎥) Q=air-flow quantity(㎥) This study was carried out at the upland farm of the Institute of Agriculture Engimeering and Utilization, Suwon, Korea. from 1971 to 1973. The results obtained in this experiment are as follows: 1. The total amount of evapotranspiration of Chinese Cabbage that is cultivated in autumn is 408.1mm during growth period. 2. Chinese cabbage rapidly grows up in the second ten days of September, 40th to 50th days after seeding. At the same time, the maximum amount of evaportranspiration of Chinese cabbage is 61.6mm/10 days 3. The correlation between Pan-evaporation and evapotranspiration is high, coefficient of correlation r=0.88**, and can be shown as The following regression equation: ET=0.913E+20.273 4. Evapotranspiration is closely related with meteorological factors: r=0.85**, for insolation, r=0.76** for air temperature, respectively. 5. The percentage of evapotranspiration amount, at the beginning of growth stage, gradually increases in proportion as the Chinese Cabbage grows but is largely affected by meteorological factors after the green cover formation. 6. By Blaney and Griddle formula, evaportranspiration coefficient "K" are within from 0,85 to 1.27.

  • PDF

Effects of relative humidity on comfort sensation by comparison between the young and the aged (여름철 냉방시 상대습도가 쾌적감에 미치는 영향(청년과 고령자의 비교를 중심으로))

  • 김동규;금종수;최광환;박희욱;김종열;주익성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.381-388
    • /
    • 1998
  • Hot and humid weather in summer generally brings about discomfort. Experiments on which relative humidity makes effects on the comfort sensation were performed to the young and the aged using sensation vote. From July to October 1996, seven college students and eleven aged people were exposed for 2 hours under six different conditions in the Pukyong National University test chamber so as to determine the effects of relative humidity on thermal and comfort sensations. Subjects were wearing same clothes, and the mean clo value was 0.5. The mean radiant temperature was equal to the air temperature and air velocity in the occupied zone around 0.lm/s. In the experiments, it was found that discomfort could be largely reduced when the humidity is controlled to low values in the settled high temperature.

  • PDF