• Title/Summary/Keyword: teletraffic

Search Result 16, Processing Time 0.018 seconds

Fast Self-Similar Network Traffic Generation Based on FGN and Daubechies Wavelets (FGN과 Daubechies Wavelets을 이용한 빠른 Self-Similar 네트워크 Traffic의 생성)

  • Jeong, Hae-Duck;Lee, Jong-Suk
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.621-632
    • /
    • 2004
  • Recent measurement studies of real teletraffic data in modern telecommunication networks have shown that self-similar (or fractal) processes may provide better models of teletraffic in modern telecommunication networks than Poisson processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A new generator of pseu-do-random self-similar sequences, based on the fractional Gaussian nois and a wavelet transform, is proposed and analysed in this paper. Specifically, this generator uses Daubechies wavelets. The motivation behind this selection of wavelets is that Daubechies wavelets lead to more accurate results by better matching the self-similar structure of long range dependent processes, than other types of wavelets. The statistical accuracy and time required to produce sequences of a given (long) length are experimentally studied. This generator shows a high level of accuracy of the output data (in the sense of the Hurst parameter) and is fast. Its theoretical algorithmic complexity is 0(n).

A study on the Economic Evaluation of Trunk using Teletraffic (통화량을 이용한 중계선의 경제성 평가에 관한 연구)

  • Yoo, Tae-Yol;Kim, Jae-Yeol;Lee, Sang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.889-893
    • /
    • 1987
  • This paper suggests a model for the economic evaluation and the selection of alternatives using teletraffic. Economic evaluation is analyzed by the comparison of revenue loss which happens without trunk extension and additional revenue which results from trunk extension. Simulation technique is used as a methodology to apply economic evaluation to telephone system. The study results will provide a support in a optimal decision about investment strategies.

  • PDF

A Comparison of Three Fixed-Length Sequence Generators of Synthetic Self-Similar Network Traffic (Synthetic Self-Similar 네트워크 Traffic의 세 가지 고정길이 Sequence 생성기에 대한 비교)

  • Jeong, Hae-Duck J.;Lee, Jong-Suk R.
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.899-914
    • /
    • 2003
  • It is generally accepted that self-similar (or fractal) processes may provide better models for teletraffic in modern telecommunication networks than Poisson Processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. Three generators of pseudo-random self-similar sequences, based on the FFT〔20〕, RMD〔12〕 and SRA methods〔5, 10〕, are compared and analysed in this paper. Properties of these generators were experimentally studied in the sense of their statistical accuracy and times required to produce sequences of a given (long) length. While all three generators show similar levels of accuracy of the output data (in the sense of relative accuracy of the Horst parameter), the RMD- and SRA-based generators appear to be much faster than the generator based on FFT. Our results also show that a robust method for comparative studies of self-similarity in pseudo-random sequences is needed.

Traffic carring capacity of the ISDN switching system (ISDN 교환기의 트래픽 용량 분석)

  • 이강원
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.107-125
    • /
    • 1993
  • Modern telecommunication switching systems are SPC(Stored Program Control) machines handling voice, data and other kinds of traffic, in an environment which tends to be fully digital switching and transmission. The throughput of such systems is determined by the real time capacity of its centralized or distributed control processors and by the traffic capacity of the switching network. Designers must verify the traffic and call processing capacity of the switching system and check its performance under traffic load before it is put into service. Verification of traffic and call processing capacity of switching systems is one of the problems treated by teletraffic studies ; teletraffic studies are based on stochastic process, queueing theory, simulations and other quantitative methods of decision making. This study suggests the general methodology to evaluate the throughput and performance of the ISDN switching system. TDX-10 ISDN switching system are employed to give illustrative examples of the methodologies discussed in this study.

  • PDF

Traffic Capacity Analysis of the Digital Switching System (전전자 교환기의 트래픽 용량 분석)

  • Lee, Gang-Won;Park, Yeon-Gi;Seo, Jae-Jun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.13 no.2
    • /
    • pp.17-34
    • /
    • 1987
  • Modern telecommunication switching systems are SPC (Stored Program Control) machines handling voice, data and other kinds of traffic, in an environment which tends to be fully digital switching and transmission. The throughput of such systems is determined by the real time capacity of its centralized or distributed control processors and by the traffic capacity of the switching network. Designers must verify the traffic and call processing capacity of the switching system and check its performance under traffic load before it is put into service. Verification of traffic and call processing capacity of switching systems is one of the problems treated by teletraffic studies; teletraffic studies are based on stochastic process, queueing theory, simulations and other quantitative methods of decision making. This paper reviews the general methodologies to evaluate the throughput and performance of the digital switching system. TDX-10, which is a fully digital switching system under development in ETRI, is employed to give illustrative examples of the methodologies discussed in this paper.

  • PDF

Algorithmic Generation of Self-Similar Network Traffic Based on SRA (SRA 알고리즘을 이용한 Self-Similar 네트워크 Traffic의 생성)

  • Jeong HaeDuck J.;Lee JongSuk R.
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.281-288
    • /
    • 2005
  • It is generally accepted that self-similar (or fractal) Processes may provide better models for teletraffic in modem computer networks than Poisson processes. f this is not taken into account, it can lead to inaccurate conclusions about performance of computer networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A generator of pseudo-random self similar sequences, based on the SRA (successive random addition) method, is implemented and analysed in this paper. Properties of this generator were experimentally studied in the sense of its statistical accuracy and the time required to produce sequences of a given (long) length. This generator shows acceptable level of accuracy of the output data (in the sense of relative accuracy of the Hurst parameter) and is fast. The theoretical algorithmic complexity is O(n).

Design of the Advanced Mobile Teletraffic Model and Object Classes for Mobile Simulator (이동통신 시뮬레이터를 위한 개선된 텔레트래픽 모델과 객체 클래스 설계)

  • Yoon, Young-Hyun;Kim, Sang-Bok;Lee, Jeong-Bae;Lee, Sung-Chul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.4
    • /
    • pp.509-518
    • /
    • 2004
  • Many simulators have been developed and are being used for the complex and various mobile communication service environments. Each of these simulators has its own teletraffic model that consists of traffic source model and network traffic model. In this paper, network traffic model and traffic source model, which are based on the data gathered in real environment, are defined in order to get more accurate simulation results in the mobile communication simulation for the urban region. The network traffic model suggested in this paper reflects the hourly call generation rate and call duration time by analyzing the data collected from actually installed base station by the time and place, and the traffic source model includes the delivery share ratio and average speed information in the region where the base station is installed. This paper defined and designed Mobile Host object that reflects the suggested traffic source model, and Call Generator object that reflects the network traffic model, and other objects support both objects. Using the teletraffic model suggested in the paper, user mobility similar to real service environment and traffic characteristics can be reflected on the simulation, and also more accurate simulation results can be got through that. In addition, by using object-oriented techniques, new service feature or environment can be easily added or changed so that the developed mobile communication simulator can reflect the real service environment all the time.

Traffic Source Modeling in ATM Networks (ATM망에서의 트래픽 정보원 모델링)

  • 노병희;정연화;이병철;김재열
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.192-195
    • /
    • 1991
  • This paper addresses the traffic source modeling issues in ATM networks and reviews some related results. Especially these issues are based on the related papers presented in the 13th International teletraffic congress(ITC).

Analysis of Network Traffic with Urban Area Characteristics for Mobile Network Traffic Model (이동통신 네트워크 트래픽 모델을 위한 도시 지역 이동통신 트래픽 특성 분석)

  • Yoon, Young-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.471-478
    • /
    • 2003
  • Traditionally,, analysis, simulation and measurement have all been used to evaluate the performance of network protocols and functional entities that support mobile wireless service. Simulation methods are useful for testing the complex systems which have the very complicate interactions between components. To develop a mobile call simulator which is used to examine, validate, and predict the performance of mobile wireless call procedures must have the teletraffic model, which is to describe the mobile communication environments. Mobile teletraffic model is consists of 2 sub-models, traffic source and network traffic model. In this paper, we analyzed the network traffic data which are gathered from selected Base Stations (BSs) to define the mobile teletraffic model. We defined 4 types of cell location-Residential, Commercial, Industrial, and Afforest zone. We selected some Base Stations (BSs) which are represented cell location types in Seoul city, and gathered real data from them And then, we present the call rate per hour, cail distribution pattern per day, busy hours, loose hours, the maximum number of call, and the minimum number of calls based on defined cell location types. Those parameters are very important to test the mobile communication system´s performance and reliability and are very useful for defining the mobile network traffic model or for working the existed mobile simulation programs as input parameters.

A study on teletraffic analysis in overlaid PCS system (다중계위 셀 구성을 갖는 PCS망의 트래픽 분석)

  • 김영일;진용옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.394-408
    • /
    • 1996
  • In this paper, we classify the transfer method of overflowed traffic from microcell to macrocell in micor/macro overlaid PCS system using CDMA technology, and analyze the traffic characteristics of traffic transfer methods. Soft-handoff is charaterized by communications with a new bastation on the same CDMA frequency assignment before terminating communications with the old basestation. Therefore, soft-handoff is superior to hard-handoff with respect to Grade Of Service, but it decreases the carried traffic of system. Therefore, we analyze the effect of soft-handoff with respect to handoff area variation. In order to analyze soft-handoff effect, we resolve the probability of dewelling time in soft-handoff area, and calculates the carried traffic of microcell using this result.

  • PDF