• 제목/요약/키워드: technology turbulence

검색결과 663건 처리시간 0.024초

Investigation of surface pressures on CAARC tall building concerning effects of turbulence

  • Li, Yonggui;Yan, Jiahui;Chen, Xinzhong;Li, Qiusheng;Li, Yi
    • Wind and Structures
    • /
    • 제31권4호
    • /
    • pp.287-298
    • /
    • 2020
  • This paper presents an experimental investigation on the surface pressures on the CAARC standard tall building model concerning the effects of freestream turbulence. Two groups of incidence turbulence are generated in the wind tunnel experiment. The first group has an approximately constant turbulence intensity of 10.3% but different turbulence integral scale varying from 0.141 m to 0.599 m or from 0.93 to 5.88 in terms of scale ratio (turbulence integral scale to building dimension). The second group presents similar turbulence integral scale but different turbulence intensity ranging from 7.2% to 13.5%. The experimental results show that the mean pressure coefficients on about half of the axial length of the side faces near the leading edge slightly decrease as the turbulence integral scale ratio that is larger than 4.25 increases, but respond markedly to the changes in turbulence intensity. The root-mean-square (RMS) and peak pressure coefficients depend on both turbulence integral scale and intensity. The RMS pressure coefficients increase with turbulence integral scale and intensity. As the turbulence integral scale increases from 0.141 m to 0.599 m, the mean peak pressure coefficient increases by 7%, 20% and 32% at most on the windward, side faces and leeward of the building model, respectively. As the turbulence intensity increases from 7.2% to 13.5%, the mean value of peak pressure coefficient increases by 47%, 69% and 23% at most on windward, side faces and leeward, respectively. The values of cross-correlations of fluctuating pressures increase as the turbulence integral scale increases, but decrease as turbulence intensity increases in most cases.

Restoration of Ghost Imaging in Atmospheric Turbulence Based on Deep Learning

  • Chenzhe Jiang;Banglian Xu;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • 제7권6호
    • /
    • pp.655-664
    • /
    • 2023
  • Ghost imaging (GI) technology is developing rapidly, but there are inevitably some limitations such as the influence of atmospheric turbulence. In this paper, we study a ghost imaging system in atmospheric turbulence and use a gamma-gamma (GG) model to simulate the medium to strong range of turbulence distribution. With a compressed sensing (CS) algorithm and generative adversarial network (GAN), the image can be restored well. We analyze the performance of correlation imaging, the influence of atmospheric turbulence and the restoration algorithm's effects. The restored image's peak signal-to-noise ratio (PSNR) and structural similarity index map (SSIM) increased to 21.9 dB and 0.67 dB, respectively. This proves that deep learning (DL) methods can restore a distorted image well, and it has specific significance for computational imaging in noisy and fuzzy environments.

Influence of turbulence modeling on CFD simulation results of tornado-structure interaction

  • Honerkamp, Ryan;Li, Zhi;Isaac, Kakkattukuzhy M.;Yan, Guirong
    • Wind and Structures
    • /
    • 제35권2호
    • /
    • pp.131-146
    • /
    • 2022
  • Tornadic wind flow is inherently turbulent. A turbulent wind flow is characterized by fluctuation of the velocity in the flow field with time, and it is a dynamic process that consists of eddy formation, eddy transportation, and eddy dissipation due to viscosity. Properly modeling turbulence significantly increases the accuracy of numerical simulations. The lack of a clear and detailed comparison between turbulence models used in tornadic wind flows and their effects on tornado induced pressure demonstrates a significant research gap. To bridge this research gap, in this study, two representative turbulence modeling approaches are applied in simulating real-world tornadoes to investigate how the selection of turbulence models affects the simulated tornadic wind flow and the induced pressure on structural surface. To be specific, LES with Smagorinsky-Lilly Subgrid and k-ω are chosen to simulate the 3D full-scale tornado and the tornado-structure interaction with a building present in the computational domain. To investigate the influence of turbulence modeling, comparisons are made of velocity field and pressure field of the simulated wind field and of the pressure distribution on building surface between the cases with different turbulence modeling.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

Effects of Combustor-Level High Free-Stream Turbulence on Blade-Surface Heat/Mass Transfer in the Three-Dimensional Flow Region near the Endwall of a High-Turning Turbine Rotor Cascade

  • Lee Sang Woo;Kwon Hyun Goo;Park Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1347-1357
    • /
    • 2005
  • Effects of combustor-level high free-stream turbulence on the blade-surface heat/mass transfer have been investigated in the three-dimensional flow region near the endwall within a high-turning turbine rotor cascade passage. Free-stream turbulence intensity and integral length scale in the high turbulence case are 14.7 percents and 80 mm, respectively. The result shows that there is no considerable discrepancy in the blade heat/mass transfer near the endwall between the low and high turbulence cases. As departing from the endwall, however, the deviation between the two cases becomes larger, particularly in the region where flow separation and re-attachment occur. Under the high turbulence, flow disturbances such as boundary-layer separation and re-attachment seem to be suppressed, which makes the blade heat/mass transfer more uniform. Moreover, there are some evidences that endwall vortices tend to be weakened under the high turbulence.

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • 제8권1호
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

TURBULENCE MODULATION OF THE UPWARD TURBULENT BUBBLY FLOW IN VERTICAL DUCTS

  • ZHANG, HONGNA;YOKOMINE, TAKEHIKO;KUNUGI, TOMOAKI
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.513-522
    • /
    • 2015
  • The present paper aims at improving the modeling of turbulence for the upward turbulent bubbly flow through the use of experimental databases that contain data on small and large vertical ducts. First, the role of bubble-induced turbulence was analyzed, which indicated the dominant role of the bubble-induced turbulence in the duct center for relatively high void fraction cases. Therefore, the turbulence therein was mainly focused on, which indicated that the stronger turbulence could be induced by bubbles in large ducts with similar void fractions as compared to that in small ducts. Next, the turbulence of upward turbulent bubbly flow near the wall is discussed to understand the interaction between the wall-induced and bubble-induced turbulence. It showed that the existence of a wall could suppress the bubble-induced turbulence given the same void fraction, and the existence of bubbles could also suppress the solely wall-induced turbulence as compared to the single-phase turbulent flow, even though the total turbulence is enhanced. The above characteristics indicated that the current turbulence modeling method needs to be modified, especially when the bubble-induced turbulence plays a dominant role.

Polarization Properties of Quasi-Homogeneous Beams Propagating in Oceanic Turbulence

  • Chen, Feinan;Zhao, Qi;Chen, Yanru;Chen, Jingjing
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.130-135
    • /
    • 2013
  • Based on the extended Huygens-Fresnel principle and generalized Stokes theory, the evolution of polarization properties of beams generated by quasi-homogenous (QH) sources propagating in clear oceanic water was studied by the use of the oceanic turbulence spatial spectrum function. The results show that the beams have similar polarization self-reconstructed behavior under different turbulence conditions in the far field, but if the propagation distance is not long enough, the degree of polarization (DOP) fluctuates with much more complexity than state of polarization (SOP) of QH beams. The self-reconstructed ability of DOP at the special distance in turbulence would get to the best value if the values of coherence of width were chosen suitably, but for SOP, it has no best value.

$K-{\varepsilon}-{\tau}$ 난류모델을 이용한 축대칭 엔진 실린더내 유동장의 수치해석 (The Numerical Analysis on In-cylinder Flow Fields of an Axisymmetric Engine Using $K-{\varepsilon}-{\tau}$ Turbulence Model)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.711-718
    • /
    • 1999
  • Current turbulence models including modified $K-{\varepsilon}-{\tau}$ turbulence model do not predict compression effect on turbulence accurately in an internal combustion engine. The $K-{\varepsilon}-{\tau}$ turbulence model was suggested to improve the predictability of compression effect by We et al. In this paper a numeri-cal study was performed to clarify the applicability of the $K-{\varepsilon}-{\tau}$ turbulenc model to the calculation of the in-cylinder flow of an axisymmetric engine. THe results using $K-{\varepsilon}-{\tau}$ turbulence model are compared to those from the modified $K-{\varepsilon}-{\tau}$ turbulence model and experimental data. The mean veloc-ity and rms velocity profiles using $K-{\varepsilon}-{\tau}$ turbulence model showed a better agreement with an experimental data than those of modifid $K-{\varepsilon}-e$ turbulence model.

  • PDF

2차 공기 주입 조건 변화에 따른 소형 소각로 내부의 유동장 분석 (Analysis of the Gas Flow Field of Primary Combustion Chamber with the Conditions of Secondary Air Injection)

  • 최병대;김성준
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.9-17
    • /
    • 2002
  • This analysis is aimed to find out how the conditions of secondary air injection affects the residence time and the turbulence energy of flue gas and flow field in a small incinerator. A commercial code, PHOENICS, is used to simulate the flow field of an Incinerator. The computational grid system is constructed in a cartesian coordinate system In this numerical experiment, an independent numerical variable is the conditions of secondary air injection and dependants are the residence time of flue gas and the mean value of turbulence energy in a primary combustion chamber. The flow field and the distribution of turbulence energy are analysed to evaluate the residence time of flue gas and the turbulence energy The computational results say that the tangential injection of secondary air make the residence time much longer than the radial injection and that the radial injection of secondary make turbulence much stronger than the tangential injection.

  • PDF