• Title/Summary/Keyword: technique of design and construction

Search Result 709, Processing Time 0.036 seconds

Application of Building using Optimal Design Technique of Irregular Wall (일반 건축물의 이형벽체 최적설계기법 적용사례)

  • Han, Kyung-Soo;Bang, Jung-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.86-87
    • /
    • 2014
  • Recently, construction project has greatly increased the needs for cost savings due to excessive competition and economic recession. The purpose of this study is to introduce application of building using optimal design technique for improving constructability and economic efficiency of structural wall. As a results, design results of irregular wall show about 15% reduction of the longitudinal bar compared to single walls and ultimately improve constructability.

  • PDF

Basic study for development of bottom-up infill module for high rise building (고층 건축물을 위한 bottom-up Infill module 개발 기초 연구)

  • Sung, Soojin;Lim, Chaeyeon;Na, Youngju;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.164-165
    • /
    • 2015
  • Modular construction technique is an adaptation of factory-based mass production concept in ordinary manufacturing industries to construction industry and it assumes that panels, units, etc. are fabricated in factories and assembled in construction sites. Given its structural limitations, modular construction technique is primarily used in low-story buildings whose maximum height is usually five stories, but researchers are actively studying possible adaptation of modular construction technique to high-rise building designs these days as in the case of infill-type modular construction design. Infill-type modular construction technique, most frequently used in high-rise building construction projects, completes frame construction first in reinforced concrete structures and fills unit modules in such structures. However, infill-type modular construction technique leads to longer construction schedule accompanying increase in construction cost, cost overrun due to additional of temporary work, and possible damage to units in the wake of facility construction. Accordingly, this study is performed as a basic study for the development of bottom-up infill-type modular construction technique intended to construct structural frames and fill in units sequentially in a bid to address such drawbacks of current infill-type modular construction technique.

  • PDF

COST ANALYSIS OF STRUCTURAL PLAN FOR REDUCING FRAMEWORK CONSTRUCTION DURATION OF REINFORCED CONCRETE RESIDENTIAL BUILDINGS

  • Seon-Woo Joo;Moonseo Park;Hyun-Soo Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.493-498
    • /
    • 2009
  • Recently, the number of complex construction projects, such as high-density development and long-span mega structure construction, has been increasing globally. Therefore, the construction duration has become an even more important factor for success. Nevertheless, in domestic residential construction projects, it usually takes more time than twice as much as North American cases. The long construction duration causes a number of problems, for example growth of financial costs, fall in productivity, and weakness of competitiveness. If the framework construction duration can be shortened to 3 ~ 4 days, then it is also expected to complete the finish work of building in shorter duration, be led to reduce the entire construction duration, and eventually to save a great deal of indirect costs. For shortening the construction duration, previous researches pointed out that the development of simplified plan design should precedes. But, in reality, lack of experience of new design and innovative techniques tends to be the obstacle to wide adoption of the simplified plan design in construction fields. In this paper, a simplified structural plan design is proposed, and the construction cost is quantitatively compared between when traditional construction technique is applied to the traditional plan and when the duration-shortening key technique is applied to the developed plan.

  • PDF

Problems And Improvements of the Standards Code for Plant Design (플랜트 설계를 위한 표준코드의 문제점 및 개선방향)

  • Gu, Bon-Hak;Kim, Tae-Hui
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.659-662
    • /
    • 2006
  • Plant industry is very important industry that dominate 70% of standard foreign countries construction acceptance an order woe 2004 years. Technique of plant industry is state that secure part equipment connection detailed design and construction class' competitive power. But, high added value creation among plant industry need technique elevation because available plan, basic design technology is insufficient. Therefore, high added value creation wishes to present problem of standard code and improvement direction for plant design to improve available plan, basic design technology competitive power.

  • PDF

Front End Engineering and Design (FEED) for Project Management of Thermal Power Plant Construction

  • KIM, Namjoon;JUNG, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.415-419
    • /
    • 2015
  • Engineering is a value-adding process applying knowledge and skills in the construction industry that includes the planning, feasibility study, project management (PM), front end engineering and design (FEED), detail design, procurement, construction, supervision, and operation. Among these engineering activities, FEED is defined as a comprehensive design practice in the early design phase focused on conceptual design and basic design. It is a particularly influencing area that determines the competitiveness of procurement and construction capability of construction firms (KNIN 2013). Nevertheless, previous studies in FEED have been limited to the design process, deliverable, or particular management technique (e.g. system engineering, collaboration, information etc.). In this context, the purpose of this study is to propose a comprehensive FEED business process structure for project management of thermal power plant construction projects encompassing the entire project life cycle. And an assessment methodology for FEED functions was developed. It is expected that the proposed structure of FEED functions and FEED evaluation methodology will contribute to improvement of competitive capability of engineering, procurement, and construction (EPC) companies.

  • PDF

Analysis of Technical Requirement for Implementation of Multi-trade Prefabrication (Multi-trade Prefabrication 기법 적용을 위한 기술적 요구사항 분석)

  • Jang, Se-Jun;Lee, Ghang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.113-114
    • /
    • 2016
  • This paper proposes a technical requirements analysis of implementation of multi-trade prefabrication. Recently, there has been a rise in the use of prefabrication to minimize on-site work for time reduction to increase productivity. Prefabrication technique is evolved into multi-trade prefabrication combining other trades from single-trade prefabrication. For implementation of new technique, not only itself but complementary techniques have to be prepared. In this paper, MEP corridor rack, a major item of multi-trade prefabrication, was implemented in the test bed and its process was analyzed to find out technical requirements. As a result, comparatively high level of IT technique was required for efficient use of multi-trade prefabrication in design, lifting and construction phase. In design phase, component level of BIM library was needed for manufacturing; and in lifting phase, BIM-based site logistics process was required. Also in construction phase, laser scanning was implemented for gathering shape and geometry of the wall and slab that were attached to multi-trade prefabrication module.

  • PDF

Prevention through Design (PtD) of integrating accident precursors in BIM

  • Chang, Soowon;Oh, Heung Jin;Lee, JeeHee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.94-102
    • /
    • 2022
  • Construction workers are engaged in many activities that may expose them to serious hazards, such as falling, unguarded machinery, or being struck by heavy construction equipment. Despite extensive research in building information modeling (BIM) for safety management, current approaches, detecting safety issues after design completion, may limit the opportunities to prevent predictable and potential accidents when decisions of building materials and systems are made. In this respect, this research proposes a proactive approach to detecting safety issues from the early design phase. This research aims to explore accident precursors and integrate them into BIM for tracking safety hazards during the design development process. Accident precursors can be identified from construction incident reports published by OSHA using a text mining technique. Through BIM-integrated accident precursors, construction safety hazards can be identified during the design phase. The results will contribute to supporting a successful transition from the design stage to the construction stage that considers a safe construction workplace. This will advance the body of knowledge about construction safety management by elucidating a hypothesis that safety hazards can be detected during the design phase involving decisions about materials, building elements, and equipment. In addition, the proactive approach will help the Architecture, Engineering and Construction (AEC) industry eliminate occupational safety hazards before near-miss situations appear on construction sites.

  • PDF

Case Study of Ground Disturbance Characteristic due to Drilling Machine in Adjacent Deep Excavation (근접 깊은 굴착에서 천공장비에 의한 지반교란 특성 사례 연구)

  • 김성욱;한병원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.77-84
    • /
    • 2003
  • Deep excavations in the urban areas have been frequently going on in large scale. Soil-nailing and Earth-anchor supporting methods are generally used in deep excavation. These construction methods cause ground disturbances during drilling process, and damages of adjacent structures and ground due to the differential settlement throughout construction period, and unexpected behaviors of supporting system according to the characteristics of drilling machine and ground condition. This article introduces two actual examples of adjacent deep excavation for the construction of university buildings in granitic Seoul area. The important results of construction and measurements obtained using Crawler drilling machine for Soil-nailing and Earth-anchor supporting methods are summarized. And some suggestions are given to improve and develop the technique of design and construction in the deep excavation projects having similar ground condition and supporting method.

  • PDF

A Case Study of Construction Management for Pusan National University Children's Hospital (부산대학교 어린이병원 건립사업 CM 수행사례)

  • Yang, Jin-Kook;Ri, Min-Hyeon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.13-18
    • /
    • 2007
  • The construction by the ministry of health and welfare support of the first special hospital for only children in busan and gyeong-nam is under building with YPNUH(Yangsan Pusan National University Hospital) for the best medical treatment town and is to improve the productivity and efficiency by eliminating unproductive and inefficient fact through the construction management, systemic and scientific management technique. So in this study we would like to suggest the generated effect to apply project management technique to all stage such as from pre-design phase, turn-key enterprise choice, construction, design VE(Value Engineering), PMIS (Project Management Information System) construction to maintenance phase and cost and schedule reduction effect through basic, execution design VE by using engineer of field.

  • PDF

3D Visualization Technique Based Tunnel Design (3차원 가시화 기법을 이용한 터널설계)

  • 홍성완;배규진;김창용;서용석;김광염
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.759-766
    • /
    • 2002
  • In the paper the authors describe the development of ITIS(Intelligent Tunneling Information System) for the Purpose of applying the 3D visualization technique, GIS, AI(Artificial Intelligence) to tunnel design and construction. VR(Virtual Reality) and 3D visualization techniques are applied in order to develope the 3D model of characteristics and structures of ground and rock mass. Database for all the materials related to site investigation and tunnel construction is developed using GIS technique. AI technique such as fuzzy theory and neural network is applied to predict ground settlement, decide tunnel support method and estimate ground and rock mass properties according to tunnel excavation steps. ITIS can help to inform various necessary tunnel information to engineers quickly and manage tunnel using acquired information based on D/B.

  • PDF