• Title/Summary/Keyword: teaching experiment phase

Search Result 7, Processing Time 0.025 seconds

Exploring Ways to Improve Science Education Area Exam in Secondary School Teacher Employment Test (중등 과학과 교사임용시험의 교과교육학 시험 개선 방안 탐색)

  • Kwak, Youngsun
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.89-96
    • /
    • 2020
  • This study explores the characteristics and ways to improve the area of science education in secondary teacher employment test (hereafter, TET). We investigated ways to differentiate second-phase science education tests from those of the first phase in the TET, and ways to improve practical tests such as designing instructional plans, teaching demonstrations, in-depth interviews, and science experiment tests. Major findings of the study include increasing the proportion of teaching demonstration while maintaining the test of designing instructional plans, which have a different focus from the paper-based exam in the first phase of the TET. Teaching demonstration tests, applying the credit of student-teaching to the TET, assessing teaching expertise in real classroom contexts focusing on subject teaching expertise, etc. along with science experiment tests, making the science experiment test compulsory for all municipal offices of education, and the necessity of evaluating the experimental design and teaching of scientific inquiry. Based on these results, developing and implementing tests such as teaching demonstrations, in-depth interviews, etc. at the local municipal education offices, introducing the apprentice teacher system, and introducing graduate schools of education were suggested.

Reflections on Developmental Research as a Research Methodology (교과과정 개발을 위한 기초로서의 개발연구에 대한 고찰)

  • Chong, Yeong-Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.3
    • /
    • pp.353-374
    • /
    • 2005
  • Recently, there have been many changes in researches of mathematics education. There is a growing number of researchers who are interested in empirical researches. According to the these changes, there is also an emphasis on methodology of mathematics education. This means that many researchers try to conduct an research using scientific approach. Therefore, new types of research developing mathematics courses recently has evolved as follows: teaching experiment, hypothetical loaming trajectory, design science, developmental research. The aim of this study is to reflect on developmental research in RME and to induce desirable directions for developing our mathematics courses. In order to attain these purposes, the present paper reflects the philosophy of RME, aim, procedure, data collection, data analysis, and justification of developmental research with illustrating a exemplar Based on these reflections, it is discussed that it needs to construct the mathematics curriculum connecting theory and practice in mathematics education, to report the process of developing mathematics courses faithfully, and to develop real mathematics courses after conducting basic developmental researches in order to take scientific app- roaches for developing mathematics courses.

  • PDF

An Analysis of Features in Self Generated Analogies during Phaseal Teaching Learning Process about Mixture Using Analogy for Lower Elementary School Students (초등학교 저학년 학생들의 단계적 비유추론 학습과정을 통한 혼합물 학습 과정에서 제시된 생성적 비유의 특징 분석)

  • Jung, Jin Kyu;Kim, Youngmin
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.419-433
    • /
    • 2015
  • Analogical reasoning is a central component of human cognition and contributes to scientific discovery and to develop science education. In this study, we investigated the process features of lower elementary school students' analogical reasoning to explain mixture concept. The subjects are 24 lower elementary students. And the research design includes three phases instruction to investigate the features of students' self generated analogy. Phase 1 is the introduction of analogy in which student learn to use analogy. Phase 2 is a POE class about mixture conception. Piaget and Inhelder studied the conception of mixing among children in relation to cognitive development. In phase 2, we taught the student with Piaget and Inhelder's the experiment and observed the features of learning process about mixture conception. Phase 3 is students' generation of analogy (self generated analogy) for the experienced phenomena in phase 2. We analyzed the students' responses through the three phases in the view of Gentner's Structure Mapping Theory. The results showed that many lower elementary school students even before formal operation stage understood the mixture conception and made well their self generated analogy to explain the mixture conception in spite of the difficulty of making self generated analogy.

Science Teaching Professionalism Changes of High-Career Elementary School Teachers Through Instructional Consulting (수업컨설팅을 통한 고경력 초등교사의 과학수업전문성 변화)

  • Kwon, Chi-Soon;Yi, Sun-Mi
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.3
    • /
    • pp.278-296
    • /
    • 2011
  • The purpose of this study is to examine the pedagogical content knowledge (PCK) elements and the changes in the science lesson planning and implementation difficulties experienced by high-career elementary school teachers with over 20 years of educational experience through the instructional consulting case of the Seoul City Office of Education Scholarship Support Group in order to find implications on effective instructional consulting support plan for improving the science teaching professionalism of high-career elementary school teachers. The result of this study is as follows : First, the pedagogical content knowledge (PCK) elements on the science lesson planning and implementation difficulties experienced by high-career elementary school teachers with over 20 years of educational experience were related to teaching strategy and they experienced difficulties in lesson content organization using lesson model and experiment facilitation and questioning, as well as in the area of interest and motive management that are definitional characteristic of learner in the learner element. Second, as for the changes in the PCK through science instructional consulting, they recognized the importance of the designing and experimenting process as students become the subject in the experiment facilitation in lesson, and they ended up attempting the postscript for promoting the thinking power of students. In addition, it was found that not only the cognitive characteristic but also the definitional characteristic of learner is important in science lesson and that students' motive is also an element that needs to be continuously managed. Third, as for effective instructional consulting plan for enhancing the science teaching professionalism of high-career elementary school teachers, it was revealed that it is necessary to first develop lesson expertise improvement consulting program that takes into account of teaching profession advancement phase of high-career teachers, and establish instructional consulting system and human resource pool of high-quality consultants based on the administrative and financial support from the Office of Education. The academic significance of this study is in the fact that it examined and searched for support plan on science teaching professionalism of high-career elementary school teacher, but a more extensive and in-depth study is needed since there is a limitation in this study on the object of study and the period.

Elementary Teachers' Perception, Practice, and Background Factors in Using Students' Everyday Experience in Teaching Science (과학수업에서 학생의 일상경험 도입에 대한 초등교사의 인식과 실행 및 배경요인)

  • Na, Jiyeon;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.7
    • /
    • pp.635-645
    • /
    • 2014
  • The purpose of this study is to identify elementary school teachers' perceptions, practices, and background factors related to introducing students' everyday experience in science teaching process. The participants of this study were four elementary school teachers who have different features such as major, teaching period, gender, growth area, and age. The data was collected through semi-constructed and in-depth interviews. The results of the research are as follows: Teachers mostly used students' everyday experience during the introduction phase of science lessons for the purpose of motivation. They hold a positive view of using students' everyday experience during science lessons and thought that science teaching needs to actively use more of students' everyday experience, while in actual practice they disregarded or only passively introduced students' everyday experience. The various background factors found to affect teachers' practice are as follows: positive memory on their science class; educational experience of their own children; their own childhood environment; their learning style; their insufficient knowledge or enthusiasm; perceived educational value of everyday life in science education; teacher's duties; importance of students' achievement; difficulty in guiding experiment; reaction of students on introducing everyday experience; characteristics of science textbook and teacher's guidebook; lack of lesson time; realization of national common basic education; characteristics of their students; demands from parents or students; effect of introducing everyday experience. In addition, we found that the teachers behave not in accordance with what they thought due to external factors related to their profession and that, for a more active use of students' everyday experience in their teaching, teachers need support from textbooks and teachers' guidebooks.

Kinematic Analysis of Horse-Riding Posture According to Skill Levels during Rising Trot with JeJu-horse (제주마를 이용한 승마 경속보시 숙련도에 따른 기승자세의 운동학적 비교분석)

  • Oh, Woon-Yong;Ryew, Che-Cheong;Kim, Jin-Hyun;Hyun, Sung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.467-479
    • /
    • 2009
  • The purpose of this study was to present the quantitative data which riders can utilize teaching field by comparison analysis of kinematics according to skill level of rider during 2 strides rising trot with the JeJu's-Horse. Participated subjects was consisted of total 10 riders(unskilled: n=5, skilled: n=5). The method of experiment & analysis was based on 3D cinematography. Variables were consisted of temporal, linear & angular kinematics by each event & phase. The skilled assigned more ratio of elapsed time in air than support phase, had the less range of motion in up-down direction and more consistent velocity in lateral & forward direction and performed periodic up-down movement with alignment in vertical direction according to elapsing of phases. The skilled more flexed at elbow and extended backwardly according to elapsing of phases, while more flexed forwardly at hip & knee and plantarflexion at ankle. The skilled postured backward extension but the unskilled do forward flexion. That is, It was considered that the unskilled continued more unstable posture than the skilled during 2 strides in rising trot.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF