• Title/Summary/Keyword: tartrate-resistant acid phosphatase

Search Result 138, Processing Time 0.026 seconds

Effects of the cathepsin K inhibitor with mineral trioxide aggregate cements on osteoclastic activity

  • Kim, Hee-Sun;Kim, Soojung;Ko, Hyunjung;Song, Minju;Kim, Miri
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.2
    • /
    • pp.17.1-17.10
    • /
    • 2019
  • Objectives: Root resorption is an unexpected complication after replantation procedures. Combining anti-osteoclastic medicaments with retrograde root filling materials may avert this resorptive activity. The purpose of this study was to assess effects of a cathepsin K inhibitor with calcium silicate-based cements on osteoclastic activity. Methods: MC3T3-E1 cells were cultured for biocompatibility analyses. RAW 264.7 cells were cultured in the presence of the receptor activator of nuclear factor-kappa B and lipopolysaccharide, followed by treatment with Biodentine (BIOD) or ProRoot MTA with or without medicaments (Odanacatib [ODN], a cathepsin inhibitor and alendronate, a bisphosphonate). After drug treatment, the cell counting kit-8 assay and Alizarin red staining were performed to evaluate biocompatibility in MC3T3-E1 cells. Reverse-transcription polymerase chain reaction, tartrate-resistant acid phosphatase (TRAP) staining and enzyme-linked immunosorbent assays were performed in RAW 264.7 cells to determine the expression levels of inflammatory cytokines, interleukin $(IL)-1{\beta}$, IL-6, tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and prostaglandin E2 (PGE2). Data were analyzed by one-way analysis of variance and Tukey's post hoc test (p < 0.05). Results: Biocompatibility results showed that there were no significant differences among any of the groups. RAW 264.7 cells treated with BIOD and ODN showed the lowest levels of $TNF-{\alpha}$ and PGE2. Treatments with BIOD + ODN were more potent suppressors of inflammatory cytokine expression (p < 0.05). Conclusion: The cathepsin K inhibitor with calcium silicate-based cement inhibits osteoclastic activity. This may have clinical application in preventing inflammatory root resorption in replanted teeth.

Effect of nicotine on orthodontic tooth movement and bone remodeling in rats

  • Lee, Sung-Hee;Cha, Jung-Yul;Choi, Sung-Hwan;Kim, Baek-il;Cha, Jae-Kook;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.51 no.4
    • /
    • pp.282-292
    • /
    • 2021
  • Objective: To quantitatively analyze the effect of nicotine on orthodontic tooth movement (OTM) and bone remodeling in rats using micro-computed tomography and tartrate-resistant acid phosphatase immunostaining. Methods: Thirty-nine adult male Sprague-Dawley rats were randomized into three groups: group A, 0.5 mL normal saline (n = 9, 3 per 3, 7, and 14 days); group B, 0.83 mg/kg nicotine (n = 15, 5 per 3, 7, and 14 days); and group C, 1.67 mg/kg nicotine (n = 15, 5 per 3, 7, and 14 days). Each animal received daily intraperitoneal injections of nicotine/saline from the day of insertion of identical 30-g orthodontic force delivery systems. A 5-mm nickel-titanium closed-coil spring was applied between the left maxillary first molar (M1) and the two splinted incisors. The rate of OTM and volumetric bone changes were measured using micro-computed tomography. Osteoclasts were counted on the mesial alveolar bone surface of the distobuccal root of M1. Six dependent outcome variables, including the intermolar distance, bone volume fraction, bone mineral density, trabecular thickness, trabecular volume, and osteoclast number, were summarized using simple descriptive statistics. Nonparametric Kruskal-Wallis tests were used to evaluate differences among groups at 3, 7, and 14 days of OTM. Results: All six dependent outcome variables showed no statistically significant among group-differences at 3, 7, and 14 days. Conclusions: The findings of this study suggest that nicotine does not affect OTM and bone remodeling, although fluctuations during the different stages of OTM in the nicotine groups should be elucidated in further prospective studies.

Effect of Co-administration of Aconiti Lateralis Preparata Radix and Cinnamomi Cortex on Osteoclast Differentiation (부자와 육계 병용투여 시 파골세포 분화 억제에 미치는 영향)

  • Jung, Gi-Eun;Kim, Jung Young;Kim, Ji-Hoon;Han, Sang-Yong;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.29 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Objectives : Aconiti Lateralis Preparata Radix (Aconitum Carmichaeli, AC) and Cinnamomi Cortex (Cinnamomi Cortex, CC) have been treated to elderly for kidney yang enhancement in Korean traditional medicine. In this study, the effects of water extract of AC and CC on RANKL (Receptor Activator for Nuclear Factor ${\kappa}B$ Ligand)-induced osteoclast differentiation were evaluated in culture system. Methods : MTT assay was used to evaluate the potential cytotoxicity of AC and CC extracts in bone macrophage marrows (BMMs) stimulated with M-CSF. TRAP (tartrate-resistant acid phosphatase) staining and TRAP activity were performed to know the inhibitory effect on osteoclast differentiation. The protein expression levels of nuclear factors such as activated T cell(NFAT)c1, c-Fos, MAPKs and ${\beta}$-actin in cell lysates treated with AC and CC extracts were analysed by western blotting. Results : AC, CC extracts and their co-administration inhibited significantly RANKL-induced osteoclast differentiation in BMMs in a dose dependent manner without toxicity. Each AC and CC extracts inhibited the phosphorylation of p38. Also, AC and CC extracts, respectively, inhibited the protein expression of c-Fos and NFATc1 more than Co-administration of AC and CC even if all treatments did. It was observed that RANKL-induced degradation of I-${\kappa}B$ is significantly suppressed by all treatments. Conclusions : Taken together, It was concluded that AC and CC have beneficial effect on osteoporosis by inhibition of osteoclast differentiation. Thus, Atractylodis AC and CC could be a treatment option for osteoporosis.

Effects of a Mixture of Cynanchi Wilfordii Radix and Humuli Lupuli Flos Extract on Estrogenic Activities and Anti-Osteoclastogenesis (백수오(白首烏)와 비주화(啤酒花) 복합물의 에스트로겐 활성과 파골세포 분화 억제효과)

  • Park, Dongjun;Lee, Hong Gu;Min, Kyoungin;Park, Hyoungkook;Jin, Mu Hyun;Cho, Ho Song
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.1-8
    • /
    • 2022
  • Objectives : This study aimed to investigate the synergistic effect of combining Cynanchi Wilfordii Radix extract with Humuli Lupuli Flos extract on estrogenic and anti-osteoclastogenic activity. Methods : Estrogenic effect of a mixture of Cynanchi Wilfordii Radix extract and Humuli Lupuli Flos extract (CWHL), Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin (an active ingredient of Cynanchi wilfordii Radix extract) and 8-prenylnaringenin (an active ingredient of Humuli Lupuli Flos extract) were examined by proliferation E-screen assay and expression of estrogen inducible gene, pS2 via Real Time-PCR (RT-PCR) in MCF-7 estrogen responsive cells. And their estrogenic activities were investigated how to modulate Estrogen receptor 𝛽 by binding affinity assay. Inhibitory effect of CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin on RANKL-induced osteoclast differentiation were tested by TRAP (Tartrate-resistant acid phosphatase) staining in osteoclastogenic RAW 264.7 cells. Results : CWHL, Humuli Lupuli Flos extract and 8-prenylnaringenin accelerated the proliferation of MCF-7 and the expression of pS2 in MCF-7. CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin bind to estrogen receptor 𝛽. CWHL, Cynanchi Wilfordii Radix extract, Humuli Lupuli Flos extract, caudatin and 8-prenylnaringenin inhibited RANKL-induced osteoclastogenesis in osteoclastogenic RAW 264.7. CWHL is more effective for all markers than Cynanchi Wilfordii Radix extract or Humuli Lupuli Flos extract alone. Conclusions : CWHL may a potential therapeutic agent for menopause and osteoporosis as a natural food resource. CWHL as a natural food source has therapeutic potential in cases of menopause and osteoporosis.

Effects of different calcium-silicate based materials on fracture resistance of immature permanent teeth with replacement root resorption and osteoclastogenesis

  • Gabriela Leite de Souza;Gabrielle Alves Nunes Freitas;Maria Tereza Hordones Ribeiro;Nelly Xiomara Alvarado Lemus;Carlos Jose Soares;Camilla Christian Gomes Moura
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.21.1-21.15
    • /
    • 2023
  • Objectives: This study evaluated the effects of Biodentine (BD), Bio-C Repair (BCR), and mineral trioxide aggregate (MTA) plug on the fracture resistance of simulated immature teeth with replacement root resorption (RRR) and in vitro-induced osteoclastogenesis. Materials and Methods: Sixty bovine incisors simulating immature teeth and RRR were divided into 5 groups: BD and BCR groups, with samples completely filled with the respective materials; MTA group, which utilized a 3-mm apical MTA plug; RRR group, which received no root canal filling; and normal periodontal ligament (PL) group, which had no RRR and no root canal filling. All the teeth underwent cycling loading, and compression strength testing was performed using a universal testing machine. RAW 264.7 macrophages were treated with 1:16 extracts of BD, BCR, and MTA containing receptor activator of nuclear factor-kappa B ligand (RANKL) for 5 days. RANKL-induced osteoclast differentiation was assessed by staining with tartrate-resistant acid phosphatase. The fracture load and osteoclast number were analyzed using 1-way ANOVA and Tukey's test (α = 0.05). Results: No significant difference in fracture resistance was observed among the groups (p > 0.05). All materials similarly inhibited osteoclastogenesis (p > 0.05), except for BCR, which led to a lower percentage of osteoclasts than did MTA (p < 0.0001). Conclusions: The treatment options for non-vital immature teeth with RRR did not strengthen the teeth and promoted a similar resistance to fractures in all cases. BD, MTA, and BCR showed inhibitory effects on osteoclast differentiation, with BCR yielding improved results compared to the other materials.

Expression of Senescence-Associated Secretory Phenotype in Senescent Gingival Fibroblasts

  • Sangim Lee
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.169-175
    • /
    • 2023
  • Background: Although microbial infection is direct cause of periodontal disease, various environmental factors influence the disease severity. Aging is considered a risk factor for oral diseases, with the prevalence of periodontal diseases increasing with age. Moreover, senescence-associated secretory phenotype (SASP) expressed in age-related diseases is a key marker of chronic inflammation and aging phenotypes. Therefore, this study aimed to understand the relevance of senescent cells to periodontal health and disease, investigate the possibility of regulating the expression of aging- and osteolysis-related factors in gingival fibroblasts, and investigate the effect of senescence induction in gingival fibroblasts on osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). Methods: After stimulation with 400 nM hydrogen peroxidase, human gingival fibroblasts (HGFs) were examined for senescence-associated β-galactosidase. Western blot and enzyme-linked immunosorbent assays were performed to assess the expression of SASP. Osteoclast formation was assessed in BMMs using a conditioned medium (CM) from hydrogen peroxide-stimulated HGFs. Osteoclastic differentiation was investigated using tartrate-resistant acid phosphatase (TRAP) staining and activity. Data analysis was performed using SPSS version 25.0. Results: The expression of senescence-related molecules, including p53, p16, and p21, and the expression of osteolytic factors, including IL-6, IL-8, and IL-17, were found to be significantly higher in the hydrogen peroxide-stimulated HGF than in the control group. Regarding the indirect effects of senescent gingival cells, the number of osteoclasts and TRAP activity increased according to the differentiation of BMM cultured in CM. Conclusion: Our results on the of between osteolytic factors and cellular senescence in gingival fibroblast cells helped to reveal evidence of pathological aging mechanisms. Furthermore, our results suggest that the development of novel therapies that target specific SASP factors could be an effective treatment strategy for periodontal disease.

Effects of Eisenia bicyclis Extracts on the Proliferation and Activity of Osteoblasts and Osteoclasts (대황 추출물이 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Kim, Seoyeon;Jeon, Myeong-Jeong;Cheon, Jihyeon;Lee, Sang-Hyeon;Kong, Changsuk;Kim, Yuck Yong;Yu, Ki Hwan;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.297-303
    • /
    • 2014
  • The effects of Eisenia bicyclis extracts on osteoblast differentiation and osteoclast formation were investigated. The proliferation of MC3T3-E1 osteoblastic cells was tested in an MTT assay. Treatment with E. bicyclis ethanol extract increased cell proliferation by approximately 128% at a concentration of 10 ${\mu}g/ml$. The ALP activities in the MC3T3-E1 cells was 179% higher when the E. bicyclis ethanol extract was processed at a concentration of 50 ${\mu}g/ml$. The proliferation of RAW 264.7 osteoclastic cells decreased significantly in response to treatment with the E. bicyclis extracts. Moreover, the proliferation of the RAW 264.7 osteoclastic cells treated with E. bicyclis hot water extract decreased by nearly 80%. In addition, the E. bicyclis extract reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from osteoclastic RAW 264.7 cells. These results indicate that E. bicyclis extracts have an anabolic effect on bone through the promotion of osteoclast differentiation and suggest that the extracts could be used in the treatment of common metabolic bone diseases.

Histological Comparative Study of Rabbit Maxillary Sinus Augmentation with Bio-Oss and β-TCP (Bio-Oss와 β-TCP를 이용한 토끼 상악동 거상술 후의 조직학적 비교 연구)

  • Moon, Yong-Suk
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1220-1232
    • /
    • 2018
  • The purpose of this animal study was to evaluate, by histological analysis, bone regeneration in rabbit maxillary sinuses with an anorganic bovine graft (Bio-Oss) and a ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) grafting. Bilateral sinus augmentation procedures were performed in 12 adult male rabbits. Rectangular replaceable bony windows were made with a piezoelectric thin saw insert. In the Bio-Oss group, Bio-Oss was grafted and in the ${\beta}-TCP$ group, ${\beta}-TCP$ was grafted and covered by replaceable bony windows. The animals were sacrificed at 2, 4, and 8 weeks after the surgical procedure. The augmented sinuses were evaluated by histomorphometric analysis using hematoxylin-eosin, Masson trichrome, and tartrate-resistant acid phosphatase stains and also by immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), type I collagen, and osteocalcin content. Histologically, new bone formation was found on the surface of Bio-Oss and ${\beta}-TCP$ particles from 2 weeks and continued to 8 weeks. Significant higher new bone formation was revealed in the ${\beta}-TCP$ group than in the Bio-Oss group at 8 weeks. The amount of graft materials was significantly decreased in the ${\beta}-TCP$ group and the number of osteoclasts was significantly increased in the ${\beta}-TCP$ group from 4 to 8 weeks. Immunoreactivity to PCNA was reduced at 8 weeks. The expression of type I collagen was significantly increased in the ${\beta}-TCP$ group at 2 weeks, but was significantly increased in the Bio-Oss group at 8 weeks. Immunoreactivity to osteocalcin was increased from 2 to 8 weeks. These histological results can help in the selection of graft materials for implants. Both Bio-Oss and ${\beta}-TCP$ are proven graft materials, however, these results indicate that ${\beta}-TCP$ showed better bone regeneration results in rabbit maxillary sinus augmentation.

Effect of isoflavone-enriched whole soy milk powder supplementation on bone metabolism in ovariectomized mice

  • Kim, So Mi;Lee, Hyun Sook;Jung, Jae In;Lim, Su-Min;Lim, Ji Hoon;Ha, Wang-Hyun;Jeon, Chang Lae;Lee, Jae-Yong;Kim, Eun Ji
    • Nutrition Research and Practice
    • /
    • v.12 no.4
    • /
    • pp.275-282
    • /
    • 2018
  • BACKGROUND/OBJECTIVE: There is intense interest in soy isoflavone as a hormone replacement therapy for the prevention of postmenopausal osteoporosis. A new kind of isoflavone-enriched whole soy milk powder (I-WSM) containing more isoflavones than conventional whole soy milk powder was recently developed. The aim of this study was to investigate the effects of I-WSM on bone metabolism in ovariectomized mice. MATERIALS/METHODS: Sixty female ICR mice individually underwent ovariectomy (OVX) or a sham operation, and were randomized into six groups of 10 animals each as follows: Sham, OVX, OVX with 2% I-WSM diet, OVX with 10% I-WSM diet, OVX with 20% I-WSM diet, and OVX with 20% WSM diet. After an 8-week treatment period, bone mineral density (BMD), calcium, alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) 5b, osteocalcin (OC), procollagen 1 N-terminal propeptide (P1NP), and osteoprotegenin (OPG) were analyzed. RESULTS: BMD was significantly lower in the OVX group compared to the Sham group but was significantly higher in OVX + 10% I-WSM and OVX + 20% I-WSM groups compared to the OVX group (P < 0.05). Serum calcium concentration significantly increased in the OVX + 10% and 20% I-WSM groups. Serum ALP levels were significantly lower in the OVX + 10% and 20% I-WSM groups compared to the other experimental groups (P < 0.05). OC was significantly reduced in the OVX group compared to the Sham group (P < 0.05), but a dose-dependent increase was observed in the OVX groups supplemented with I-WSM. P1NP and OPG levels were significantly reduced, while TRAP 5b level was significantly elevated in the OVX group compared with the Sham group, which was not affected by I-WSM (P < 0.05). CONCLUSIONS: This study suggests that I-WSM supplementation in OVX mice has the effect of preventing BMD reduction and promoting bone formation. Therefore, I-WSM can be used as an effective alternative to postmenopausal osteoporosis prevention.

Effect of Fermented Benincasa hispida cong. Extract on Promotion of Osteoblast Differentiation and Inhibition of Osteoclast Generation (동과 발효물의 조골세포 분화 촉진 및 파골세포 생성 억제 효과)

  • Choi, Ye-Eun;Yang, Jung-Mo;Yoo, Hee-Won;Cho, Ju-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.364-371
    • /
    • 2022
  • The bones of the human body support the structures of the body and provide protection for a person's internal organs. Bone metabolic diseases are on the rise due to a significant increase in life expectancy over a short period of time. Therefore, we investigated the osteoblast differentiation promoting and osteoclastogenesis inhibitory activities of fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf). We evaluated the alkaline phosphatase (ALP) activity of MC3T3-E1 mouse calvarial-derived osteoblasts. We also evaluated expression of ALP, osteocalcin (OCN), and runt-related transcription factor 2 (Runx2), which regulate osteoblast differentiation. To assess effects on osteoclast formation, tartrate-resistant acid phosphatase (TRAP) activity in RAW264.7 cells was analyzed. ALP activity increased by 121-136% and 140-156%, respectively in the presence of HR1901-BS and HR1901-BSaf. Expression of osteoblast differentiation factor also increased significantly. We also confirmed that HR1901-BS and HR1901-BSaf decreased TRAP activity in osteoclasts by 35-47% and 23-39%, respectively. Our results showed that fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) increase bone mineralization and osteoblast differentiation activity in MC3T3-E1 cells, and inhibit bone resorption activity in RAW264.7 cells. In conclusion, fermented Benincasa hispida cong. (HR1901-BS, HR1901-BSaf) can be used as an effective natural resource for preventing and treating bone-related diseases.