• Title/Summary/Keyword: targeted cancer gene therapy

Search Result 53, Processing Time 0.024 seconds

Epigenetic Silencing of CHOP Expression by the Histone Methyltransferase EHMT1 Regulates Apoptosis in Colorectal Cancer Cells

  • Kim, Kwangho;Ryu, Tae Young;Lee, Jinkwon;Son, Mi-Young;Kim, Dae-Soo;Kim, Sang Kyum;Cho, Hyun-Soo
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.622-630
    • /
    • 2022
  • Colorectal cancer (CRC) has a high mortality rate among cancers worldwide. To reduce this mortality rate, chemotherapy (5-fluorouracil, oxaliplatin, and irinotecan) or targeted therapy (bevacizumab, cetuximab, and panitumumab) has been used to treat CRC. However, due to various side effects and poor responses to CRC treatment, novel therapeutic targets for drug development are needed. In this study, we identified the overexpression of EHMT1 in CRC using RNA sequencing (RNA-seq) data derived from TCGA, and we observed that knocking down EHMT1 expression suppressed cell growth by inducing cell apoptosis in CRC cell lines. In Gene Ontology (GO) term analysis using RNA-seq data, apoptosis-related terms were enriched after EHMT1 knockdown. Moreover, we identified the CHOP gene as a direct target of EHMT1 using a ChIP (chromatin immunoprecipitation) assay with an anti-histone 3 lysine 9 dimethylation (H3K9me2) antibody. Finally, after cotransfection with siEHMT1 and siCHOP, we again confirmed that CHOP-mediated cell apoptosis was induced by EHMT1 knockdown. Our findings reveal that EHMT1 plays a key role in regulating CRC cell apoptosis, suggesting that EHMT1 may be a therapeutic target for the development of cancer inhibitors.

Targeted Silencing of Inhibitors of Apoptosis Proteins with siRNAs: A Potential Anti-cancer Strategy for Hepatocellular Carcinoma

  • Li, Gang;Chang, Hong;Zhai, Yun-Peng;Xu, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.4943-4952
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) is one of the most common malignancies, with a very poor prognosis. Despite significant improvements in diagnosis and treatment in recent years, the long-term therapeutic efficacy is poor, partially due to tumor metastasis, tecurrence, and resistance to chemo-or radio-therapy. Recently, it was found that a major feature of tumors is a combination of unrestrained cell proliferation and impaired apoptosis. There are now 8 recogized members of the IAP-family: NAIP, c-IAP1, c-IAP2, XIAP, Survivin, Bruce, Livin and ILP-2. There proteins all contribute to ingibition of apoptosis, and provide new potential avenues of cancer treatment. As a powerful tool to suppress gene expression in mammalian cells, RNAi species for inhibiting IAP genes cab be directed against cancers. This review will provide a brief introduction to recent developments of the application IAP-siRNA in tumor studies, with the aim of inspiring future treatment of HCC.

Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach

  • Vahidi, Sogand;Mirzajani, Ebrahim;Norollahi, Seyedeh Elham;Aziminezhad, Mohsen;Samadani, Ali Akbar
    • Journal of Pharmacopuncture
    • /
    • v.25 no.2
    • /
    • pp.88-100
    • /
    • 2022
  • Gastric cancer (GC) is a significant cause of cancer mortality which has led to focused exploration of the pathology of GC. The advent of genome-wide analysis methods has made it possible to uncover genetic and epigenetic fluctuation such as abnormal DNA methylation in gene promoter regions that is expected to play a key role in GC. The study of gastric malignancies requires an etiological perspective, and Helicobacter pylori (H. pylori) was identified to play a role in GC. H. pylori infection causes chronic inflammation of the gastric epithelium causing abnormal polyclonal methylation, which might raise the risk of GC. In the last two decades, various pathogenic factors by which H. pylori infection causes GC have been discovered. Abnormal DNA methylation is triggered in several genes, rendering them inactive. In GC, methylation patterns are linked to certain subtypes including microsatellite instability. Multiple cancer-related processes are more usually changed by abnormal DNA methylation than through mutations, according to current general and combined investigations. Furthermore, the amount of acquired abnormal DNA methylation is heavily linked to the chances of developing GC. Therefore, we investigated abnormal DNA methylation in GC and the link between methylation and H. pylori infection.

Clinical Implementation of Precision Medicine in Gastric Cancer

  • Jeon, Jaewook;Cheong, Jae-Ho
    • Journal of Gastric Cancer
    • /
    • v.19 no.3
    • /
    • pp.235-253
    • /
    • 2019
  • Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.

Elucidating molecular mechanisms of acquired resistance to BRAF inhibitors in melanoma using a microfluidic device and deep sequencing

  • Han, Jiyeon;Jung, Yeonjoo;Jun, Yukyung;Park, Sungsu;Lee, Sanghyuk
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.10
    • /
    • 2021
  • BRAF inhibitors (e.g., vemurafenib) are widely used to treat metastatic melanoma with the BRAF V600E mutation. The initial response is often dramatic, but treatment resistance leads to disease progression in the majority of cases. Although secondary mutations in the mitogen-activated protein kinase signaling pathway are known to be responsible for this phenomenon, the molecular mechanisms governing acquired resistance are not known in more than half of patients. Here we report a genome- and transcriptome-wide study investigating the molecular mechanisms of acquired resistance to BRAF inhibitors. A microfluidic chip with a concentration gradient of vemurafenib was utilized to rapidly obtain therapy-resistant clones from two melanoma cell lines with the BRAF V600E mutation (A375 and SK-MEL-28). Exome and transcriptome data were produced from 13 resistant clones and analyzed to identify secondary mutations and gene expression changes. Various mechanisms, including phenotype switching and metabolic reprogramming, have been determined to contribute to resistance development differently for each clone. The roles of microphthalmia-associated transcription factor, the master transcription factor in melanocyte differentiation/dedifferentiation, were highlighted in terms of phenotype switching. Our study provides an omics-based comprehensive overview of the molecular mechanisms governing acquired resistance to BRAF inhibitor therapy.

Transferrin-Conjugated Liposome/IL-12 pDNA Complexes for Cancer Gene Therapy in Mice

  • Joo, Soo-Yeon;Kim, Jin-Seok;Park, Heon-Joo;Choi, Eun-Kyung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.293-296
    • /
    • 2005
  • Transferrin ($T_{f}$) has been used as a targeting ligand for delivering liposome/interleukin-12 (IL-12) pDNA complexes to cancer cells mostly due to the greater number of transferrin receptors ($T_{f}R$) found on tumor cells than on normal cells. $T_{f}$ was conjugated to liposomes via the reaction of MPB-PE with thiol groups of $T_{f}$ introduced by a heterobifunctional cross-linking agent, N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). Four days after C26 inoculation when the tumor volume reached ${\sim}100mm^{3}$, tumor-bearing Balb/c mice were injected intravenously with $T_{f}-liposome/IL-12 pDNA$complexes twice a week for 3 weeks. Significant suppression of tumor growth was achieved in the group treated with the $T_{f}-liposome/IL-12 pDNA$ complexes, with a dose of $10{\mu}g$ of IL-12 pDNA showing the highest suppression effect among the tested doses. Similar results were obtained when the therapy was initiated one day after tumor inoculation, although in this case $30{\mu}g$ IL-12 pDNA/$T_{f}-liposome$ complexes showed a significant suppression of tumor growth between 19 and 23 days after tumor inoculation. This result indicates that the transferrin receptor-targeted liposomal system is an efficient delivery agent of therapeutic genes, such as IL-12, in mice and that its potential clinical use warrants further research investigation.

Overcoming 5-Fu Resistance of Colon Cells through Inhibition of Glut1 by the Specific Inhibitor WZB117

  • Liu, Wei;Fang, Yong;Wang, Xiao-Tong;Liu, Ju;Dan, Xing;Sun, Lu-Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7037-7041
    • /
    • 2014
  • Background: 5-Fluorouracil (5-FU) is the most commonly used drug in colon cancer therapy. However, despite impressive clinical responses initially, development of drug resistance to 5-Fu in human tumor cells is the primary cause of failure of chemotherapy. In this study, we established a 5-Fu-resistant human colon cancer cell line for comparative chemosensitivity studies. Materials and Methods: Real time PCR and Western blotting were used to determine gene expression levels. Cell viability was measured by MTT assay. Glucose uptake was assess using an Amplex Red Glucose/Glucose Oxidase assay kit. Results: We found that 5-Fu resistance was associated with the overexpression of Glut1 in colon cancer cells. 5-Fu treatment at low toxic concentration induced Glut1 expression. At the same time, upregulation of Glut1 was detected in 5-Fu resistant cells when compared with their parental cells. Importantly, inhibition of Glut1 by a specific inhibitor, WZB117, significantly increased the sensitivity of 5-Fu resistant cells to the drug. Conclusions: This study provides novel information for the future development of targeted therapies for the treatment of chemo-resistant colon cancer patients. In particular it demonstrated that Glut1 inhibitors such as WZB117 may be considered an additional treatment options for patients with 5-Fu resistant colon cancers.

Adenovirus-Mediated Antisense Telomerase with Cisplatin Increased the Susceptibility of Cisplatin Resistant Ovarian Cancer Cell Line

  • Kim, Dae-Shick;Song, Joon-Seok;Lee, Kyu-Wan;Kim, Mee-Hye;Kim, Kyung-Tai;Kim, Hysook;Kim, Young-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.711-715
    • /
    • 2002
  • Telomerase adds telomeric repeats to chromosomal ends and is known to play an important role in carcinogenesis through cellular immortalization. Since telomerase is an essential pathogenomic factor in malignant tumors, inhibiting telomerase activity is thought to be possible to make telomerase positive tumors more sensitive to cisplatin treatment, which is effective in ovarian cancers, but clinical success Is limited by chemo-resistance. In the present study, cisplatin-sensitive ovarian cancer cell line A2780 and cisplatin-resistant A2780/cp70 cell line were infected with antisense telomerase adenovirus Ad-OA. It was found that the Ad-OA suppressed ovarian cancer cell growth and this effect was mainly due to the induction of caspase-dependent apoptosis. Next, we infected the cisplatin resistant ovarian cancer cell line A2780/ cp70 with Ad-OA and cisplatin concurrently. Interestingly, cisplatin treatment with Ad-Oh was more effective to cisplatin-induced cell death in A2780/cp70 cells compared to cisplatin or the vector group only. These data suggest that cisplatin treatment with Ad-OA may be a new chemo-sensitizer for cisplatin resistant ovarian cancer.

Assessment of Relationship between Wilms' Tumor Gene (WT1) Expression in Peripheral Blood of Acute Leukemia Patients and Serum IL-12 and C3 Levels

  • Rezai, Omran;Khodadadi, Ali;Heike, Yuji;Mostafai, Ali;Gerdabi, Nader Dashti;Rashno, Mohammad;Abdoli, Zahra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7303-7307
    • /
    • 2015
  • Background: Leukemia is a common cancer among children and adolescents. Wilms' tumor gene (WT1) is highly expressed in patients with acute leukemia. It is found as a tumor associated antigen (TAA) in various types of hematopoietic malignancies and can be employed as a useful marker for targeted immunotherapy and monitoring of minimal residual disease (MRD). In this regard, WT1 is a transcription factor that promotes gene activation or repression depending on cellular and promoter context. The purpose of this study was assessment of WT1 gene expression in patients with acute leukemia, measurement of IL-12 and C3 levels in serum and evaluation of the relationship between them. Materials and Methods: We evaluated the expression of WT1 mRNA using real-time quantitative RT-PCR and serum levels of IL-12 and C3 using ELISA and nephelometry in peripheral blood of 12 newly diagnosed patients with acute leukemia and 12 controls. Results: The results of our study showed that the average wT1 gene expression in patients was 7.7 times higher than in healthy controls (P <0.05). In addition, IL-12 (P = 0.003) and C3 (P <0.0001) were significantly decreased in the test group compared to controls. Conclusions: WT1 expression levels are significantly higher in patients compared with control subjects whereas serum levels of interleukin-12 and C3 are significantly lower in patients. Wt1 expression levels in patients are inversely related with serum levels of IL-12 and C3.

Correlation between EGFR Gene Mutations and Lung Cancer: a Hospital-Based Study

  • Kavitha, Matam;Iravathy, Goud;Adi Maha, Lakshmi M;Ravi, V;Sridhar, K;Vijayanand, Reddy P;Chakravarthy, Srinivas;Prasad, SVSS;Tabassum, Shaik Nazia;Shaik, Noor Ahmad;Syed, Rabbani;Alharbi, Khalid Khalaf;Khan, Imran Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7071-7076
    • /
    • 2015
  • Epidermal growth factor receptor (EGFR) is one of the targeted molecular markers in many cancers including lung malignancies. Gefitinib and erlotinib are two available therapeutics that act as specific inhibitors of tyrosine kinase (TK) domains. We performed a case-control study with formalin-fixed paraffin-embedded tissue blocks (FFPE) from tissue biopsies of 167 non-small cell lung carcinoma (NSCLC) patients and 167 healthy controls. The tissue biopsies were studied for mutations in exons 18-21 of the EGFR gene. This study was performed using PCR followed by DNA sequencing. We identified 63 mutations in 33 men and 30 women. Mutations were detected in exon 19 (delE746-A750, delE746-T751, delL747-E749, delL747-P753, delL747-T751) in 32 patients, exon 20 (S786I, T790M) in 16, and exon 21 (L858R) in 15. No mutations were observed in exon 18. The 63 patients with EFGR mutations were considered for upfront therapy with oral tyrosine kinase inhibitor (TKI) drugs and have responded well to therapy over the last 15 months. The control patients had no mutations in any of the exons studied. The advent of EGFR TKI therapy has provided a powerful new treatment modality for patients diagnosed with NSCLC. The study emphasizes the frequency of EGFR mutations in NSCLC patients and its role as an important predictive marker for response to oral TKI in the south Indian population.