• Title/Summary/Keyword: target wheel

Search Result 76, Processing Time 0.02 seconds

Development of Proving Ground Test Mode for Durability Test of Active Suspension System (사용자 주행 환경을 고려한 능동 현가 시스템의 PG 내구 시험 모드 개발)

  • Woo, Jongwoon;Lee, Seonbong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.16-23
    • /
    • 2013
  • It is important that proving ground damage is correlated with target customer usage. This paper describes the test mode for durability test of active suspension control system for proving ground correlation and optimization. Acceleration, strain, wheel force and other types of data are collected on a vehicle as it traverses different proving ground surfaces. The primary objective of the analysis is to determine which mixture of proving ground surfaces offers the best representation of customer usage while minimizing the total test time. And durability testing offers the best way to assess the capability of a product to reach its reliability target. The test should be representative of the real environmental load and replicate the same customer usage.

Development of Active Yaw Moment Control Algorithm Based on Brake Slip Control (브레이크 슬립 제어에 기초한 차량 능동 요모멘트 제어 알고리즘의 개발)

  • Youn, Weon-Young;Song, Jae-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.487-492
    • /
    • 2000
  • Yaw moment control algorithm for improving stability of a vehicle in cornering is presented in this paper. A change of the yaw moment according to an increment in brake ship at each wheel is examined and reflected in the control algorithm. This control algorithm computes the target yaw velocity as the vehicle motion desired by the driver for directional stability control in cornering and it makes the actual yaw velocity follow the target one. The yaw moment control was achieved by brake slip control and simple brake slip control logic was introduced in this paper.

  • PDF

Pobabilistic Design of Asphalt Pavement Surface Courae (아스팔트 鋪裝道路의 確率論的 表層設計)

  • Kim, Gwang-U;Yeon, Gyu-Seok
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.1
    • /
    • pp.66-77
    • /
    • 1992
  • A prototype probabilistic approach to thickness design for asphalt pavement surface course was developed using first-order second moment probability model. The tensile strain (load effect) developing at the bottom of surface layer due to the wheel load and the critical strain (resistance) of asphalt concrete were used as random variables for pavement reliability analysis. Based on the parameters for load effect and resistance data collected from reference and field, simulated data were generated by Monte Carlo method for reliability evaluation of the pavement for a typical rural highway. Thickness of pavement surface course was defined in terms of target reliability of the pavement, growth factor of traffic, design life of pavement and resistance of the asphalt concrete to be placed on the pavement. According to these rationales, prototype thickness design chrats were sugested through example studies. From these, similar design charts can be developed for many pavements if appropriate data and target reliability are determined.

  • PDF

Structure Determination of Syndecan-4 Transmembrane Domain using PISA Wheel Pattern and Molecular Dynamics simulation

  • Choi, Sung-Sub;Jeong, Ji-Ho;Kim, Ji-Sun;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2014
  • Human transmembrane proteins (hTMPs) are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these hTMPs, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of hTMPs. We tried to produce large amounts of Syndecan-4 transmembrane domain (Syd4-TM) that is related to the healing wounds and tumor for a long time. In this study, we performed the structure determination of Syd4-TM combining the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of expressed Syd4-TM and Molecular Dynamics (MD) simulation using Discovery Studio 3.1.

Position Control Algorithm and Experimental Evaluation of an Omni-directional Mobile Robot (전방향 이동로봇 위치제어 알고리즘과 실험적 검증)

  • Chu, Baeksuk;Cho, Gangik;Sung, Young Whee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • In this study, a position control algorithm for an omni-directional mobile robot based on Mecanum wheels was introduced and experimentally evaluated. Multiple ultrasonic sensors were installed around the mobile robot to obtain position feedback. Using the distance of the robot from the wall, the position and orientation of the mobile robot were calculated. In accordance with the omni-directional velocity generation mechanism, the velocity kinematics between the Mecanum wheel and the mobile platform were determined. Based on this formulation, a simple and intuitive position control algorithm was suggested. To evaluate the control algorithm, a test bed composed of artificial walls was designed and implemented. While conventional control algorithms based on normal wheels require additional path planning for two-dimensional planar motion, the omni-directional mobile robot using distance sensors was able to directly follow target positions with the simple proposed position feedback algorithm.

Recycling Method of Used Indium Tin Oxide Targets (폐 인듐주석산화물 타겟의 재활용 기술)

  • Lee, Young-In;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.4
    • /
    • pp.174-179
    • /
    • 2012
  • In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at $1000^{\circ}C$ for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at $1500^{\circ}C$ for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.

Development of The Moving Target Tracking Robot in Outdoor Environment (실외환경에서의 이동 목표 추종용 로봇의 개발)

  • 안철기;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.954-962
    • /
    • 2002
  • In a park or street, we can see many people jogging or walking with their dogs tracking their masters. In this study, an entertainment robot that imitates a dog's behavior is created. The robot's task is tracking a moving target that is recognized as the master. In order to design the robot, the ecological approach. in which the robot's goals and surroundings heavily influence its design, is used. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a human jogging in outdoor space like a park. A sensor system which can detect the position of a master for the robot in the outdoor space, is developed. This sensor system consists of a signal transmitter which is at the hand of a master and some sensors which are mounted on the robot. The transmitter emits RF(radio frequency) and ultrasonic signals and the sensors detect the direction and distance from the robot to the transmitter by using the received signals. For the control architecture of the robot, a purely reactive behavior-based method is used in order to increase speed of response. The developed robot is evaluated through experiments conducted in indoor and outdoor environments.

AUTONOMOUS TRACTOR-LIKE ROBOT TRAVELING ALONG THE CONTOUR LINE ON THE SLOPE TERRAIN

  • Torisu, R.;Takeda, J.;Shen, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.690-697
    • /
    • 2000
  • The objective of this study is to develop a method that is able to realize autonomous traveling for tractor-like robot on the slope terrain. A neural network (NN) and genetic algorithms (GAs) have been used for resolving nonlinear problems in this system. The NN is applied to create a vehicle simulator that is capable to describe the motion of the tractor robot on the slope, while it is impossible by the common dynamics way. Using this vehicle simulator, a control law optimized by GAs was established and installed in the computer to control the steering wheel of tractor robot. The autonomous traveling carried out on a 14-degree slope had initial successful results.

  • PDF

Ultra-precision Free-form Surface Grinding of WC Core (초경 금형의 자유 곡면 초정밀 연삭)

  • Park, Soon-Sub;Hwang, Yeon;Kim, Geon-Hee;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.64-71
    • /
    • 2009
  • Cylindrical lens core for optical transceiver was designed and machined. With the lens design data, WC asymmetric core surface data were generated for non-revolutional ultra-precision grinding. Grinding process for optimum machining conditions of target surface was studied in terms of surface roughness and form profile. We used experimental results to optimize turbine speed, feed-rate and depth of cut with durable grinding wheel wear. Ground WC cores were measured contact type profilers and verified.

Development of a Prototype Integrated Design System Based on Multi-Agent System (멀티 에이전트 기반의 통합 설계 시스템 개발에 관한 연구)

  • 이재경;이종원;한형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1357-1360
    • /
    • 2004
  • In this paper, a prototype of agent-based engineering system is developed based on the AADE (autonomous agent development environment), a FIPA compliant agent platform. By applying several advanced technologies including software agents, Internet/Web, workflow and database, the developed prototype system is able to successfully fulfill our target of integrating personnel, design activities and engineering resources along a predefined engineering design project (workflow). A software prototype is implemented to integrate various engineering software tools including CAD, structural analysis (FEA), dynamic analysis, fatigue analysis. A wheel-axle-assembly (part of a bogie system) is chosen as a test case for the validation of the prototype system.

  • PDF