• Title/Summary/Keyword: target uncertainties

Search Result 147, Processing Time 0.023 seconds

Hybrid Qualitative Reasoning Approach to Predicting the Expected Performance of the Intellectual Property Rights Management System- KIPONet Case (전자정부 홍보를 위한 ARP(Academic Research Paper) 사례(특허, 조달) 소개)

  • Lee, Kun-Chang
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.145-156
    • /
    • 2007
  • In the previous e-government studies, there was no study in which the ambitious problem of assessing the expected performance of an e-government software when it is adopted in other country. This study was motivated to propose a new method to resolve this research question. With using the KIPONet (Korean Intellectual Property Office Net) as a target e-government software, which has been successfully implemented and operated by the Republic of Korea government since Jan 1999 for the purpose of managing the intellectual property rights (IPRs), we propose a Hybrid Qualitative Reasoning (HQR) approach to predicting the expected performance of the KIPONet. The main recipes of the HQR are that the HQR considers causal relationships existing among both qualitative and quantitative variables of the KIPONet, and that uncertainties embedded in some variables are handled by using Monte Carlo mechanism. The application of the proposed HQR to predicting the expected performance of the KIPONet results in statistically significant outcomes with 95% confidence level.

  • PDF

Uniform ultimate boundedness and global asympotic stabilization for systems with mis-matched uncertainties (비 매칭 불확실성이 있는 비선형시스템의 균일 종국적 유계성 및 대역적 점근 안정성)

  • 장충환;성열완;이건일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.29-36
    • /
    • 1998
  • In this paper we propose a control law using a Lyapunov-like function that makes stable the systems which have mis-matched uncertainties. The existing control law using a Lyapunov-like function, which gives global saymptotic stability, is designed under the assumption of a targetsystem to be stable locally. But we broaden here the class of target systems by designing the control law which can give uniform ultimate boundedness to even the systems not satisfing the locally asymptotic stability. And we also show that the control law giving global asymptotic stability can be designed more systematically through using the uniform ultimate boundedness.

  • PDF

Energy-Efficient Adaptive Dynamic Sensor Scheduling for Target Monitoring in Wireless Sensor Networks

  • Zhang, Jian;Wu, Cheng-Dong;Zhang, Yun-Zhou;Ji, Peng
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.857-863
    • /
    • 2011
  • Due to uncertainties in target motion and randomness of deployed sensor nodes, the problem of imbalance of energy consumption arises from sensor scheduling. This paper presents an energy-efficient adaptive sensor scheduling for a target monitoring algorithm in a local monitoring region of wireless sensor networks. Owing to excessive scheduling of an individual node, one node with a high value generated by a decision function is preferentially selected as a tasking node to balance the local energy consumption of a dynamic clustering, and the node with the highest value is chosen as the cluster head. Others with lower ones are in reserve. In addition, an optimization problem is derived to satisfy the problem of sensor scheduling subject to the joint detection probability for tasking sensors. Particles of the target in particle filter algorithm are resampled for a higher tracking accuracy. Simulation results show this algorithm can improve the required tracking accuracy, and nodes are efficiently scheduled. Hence, there is a 41.67% savings in energy consumption.

Critical Strengthening Ratio of CFRP Plate Using Probability and Reliability Analysis for Concrete Railroad Bridge Strengthened by NSM (확률.신뢰도 기법을 적용한 CFRP 플레이트 표면매립보강 콘크리트 철도교의 임계보강비 산정)

  • Oh, Hong-Seob;Sun, Jong-Wan;Oh, Kwang-Chin;Sim, Jong-Sung;Ju, Min-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.681-688
    • /
    • 2009
  • The railroad bridges have been usually experienced by vibration and impact in service state. With this reason, it is important that the effective strengthening capacity should be considered to resist the kind of service loading. In this study, NSM strengthening technique is recommended for the concrete railroad bridge because of its better effective resistance for dynamic loading condition and strengthening cost than the conventional externally bonded strengthening using fiber sheet. However, to widely apply NSM method for the concrete railroad bridge, it needs that the strengthening ratio has to be reasonably evaluated with geometrical and material uncertainties, especially for the concrete bridge under long-term service state without the apparent design history and detail information such as concrete compressive strength, reinforcing ratio, railroad characteristics. The purpose of this study is to propose the critical strengthening ratio of CFRP plate for the targeted concrete railroad bridge with uncertainties of deterioration of the structures. To do this, Monte Carlo Simulation (MCS) for geometrical and material uncertainties have been applied so that this approach may bring the reasonable strengthening ratio of CFRP plate considering probabilistic uncertainties for the targeted concrete railroad bridge. Finally, the critical strengthening ratio of NSM strengthened by CFRP plate is calculated by using the limit state function based on the target reliability index of 3.5.

Guidance Law for Near Space Interceptor based on Block Backstepping Sliding Mode and Extended State Observer

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.163-172
    • /
    • 2014
  • This paper proposes a novel guidance law based on the block backstepping sliding mode control and extended state observer (ESO), which also takes into account the autopilot dynamic characteristics of the near space interceptor (NSI), and the impact angle constraint of attacking the maneuvering target. Based on the backstepping control approach, the target maneuvers and the parameter uncertainties of the autopilot are regarded as disturbances of the outer loop and inner loop, respectively. Then, the ESO is constructed to estimate the target acceleration and the inner loop disturbance, and the block backstepping sliding model guidance law is employed, based on the estimated disturbance value. Furthermore, in order to avoid the "explosion of complexity" problem, first-order low-pass filters are also introduced, to obtain differentiations of the virtual control variables. The stability of the closed-loop guidance system is also proven, based on the Lyapunov theory. Finally, simulation results demonstrate that the proposed guidance law can not only overcome the influence of the autopilot dynamic delay and target maneuvers, but also obtain a small miss distance.

A Global Optimal Sliding-Mode Control for the Minimum Time Trajectory Tracking with Bounded Inputs

  • Choi, Hyeung-sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.433-440
    • /
    • 2001
  • A new design of the sliding mode control is proposed for the uncertain linear time-varying second order system. The proposed control drives system states to the target point in the minimum time with specified ranges of parametric uncertainties and disturbances. One of the advantages of the proposed control scheme is that the control inputs do not go beyond saturation limits of the actuators. The other advantage is that the minimum arrival time and the acceleration of the second order actuators system can be estimated with given parametric bounds and can be expressed in the closed from; conversely, the designer can select actuators based on the condition of the minimum arrival time to the target point. The superior performance of the proposed control scheme to other sliding mode controllers is validated by computer simulations.

  • PDF

Reliability Analysis of Reinforced Concrete Shear Wall Subjected to Biaxial Bending (이축 휨 모멘트를 받는 철근콘크리트 전단벽의 신뢰성 해석)

  • Park Jae Young;Shin Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.433-436
    • /
    • 2004
  • The safety of buildings is generally estimated by analyzing a plane frame ignoring a minor bending moment. In this paper, uncertainties of reinforced concrete shear wall subjected to a biaxial bending are considered. First, major parameters are selected from all parameters of general shear wall design to perform a reliability analysis in their practical ranges, means and standard derivations of selected design parameters for the reliability analysis are calculated by a data mining as a simulation method. The bi-section method is used to find inclined neutral axis and its limit state using MATLAB subjected to the concept on strength design method. The reliability index $\beta$ as a safety index is calculated based on AFOSM(Advanced First-Order Second Moment) method. Also, if target reliability index $\beta_T$ is decided by an engineer an amount of reinforcement can be calculated by subtracting the reliability index $\beta$ from the target reliability index $\beta_T$.

  • PDF

Vibration-free Control of Double Integrator Typed Motor via Loop Transfer Recovery (루프 전달 회복을 통한 이중 적분 모터의 무진동 제어)

  • Suh, Sang-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.900-906
    • /
    • 2010
  • This note proposes vibration-free motor control through modified LQG/LTR methodology. A conventional LQG/LTR method is a design tool in the frequency domain. However, unlike the conventional one, the proposed one is a time response based design method. This feature is firstly designed by parameterized settling time control gain through the target loop design procedure and the feature is secondly realized by loop transfer recovery. In order to show convergence to the target loop transfer functions, asymptotic behaviors of the open and the closed loop transfer functions are shown. At the conclusion, it is verified that the proposed method is robustly stable to parametric uncertainties through ${\mu}$-plot.

A Study on Reliability Based Design Criteria for Erection Members (가설부재의 신속성 설계기준에 관한 연구)

  • 민경주
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.3
    • /
    • pp.56-63
    • /
    • 1991
  • This study investigates reliability based design criteria for the erection members, and proposes practical algorithm which is based on Ellingwood's algorithm for the reliability analysis and the derivation of reliability based criteria. The magnitude of the uncertainties associated with load effects are chosen primarily by considering our level of practice. And thus the uncertainties so obtained are applied for the reliability analysis and the derivation of reliability based design criteria. A target reliability($\beta$$_{o}$=2.0) is selected as an appropriate value by analyzing the reliability levels of our current USD and WSD design standards. Them a set of load and resistance factors corresponding to the target reliability is proposed as a reliability based design provision, and furthermore a set of allowable stresses for steel having same level of reliability with the corresponding LRFD criteria is also prepared for the current WSD design provision. It may be concluded that the proposed LRFD reliability based design provisions and the corresponding allowable stresses give more rational design than the current code for erection membars.s.s.

  • PDF

Spatial Compounding of Ultrasonic Diagnostic Images for Rotating Linear Probe with Geometric Parameter Error Compensation

  • Choi, Myoung Hwan;Bae, Moo Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1418-1425
    • /
    • 2014
  • In ultrasonic medical imaging, spatial compounding of images is a technique where ultrasonic beam is steered to examine patient tissues in multiple angles. In the conventional ultrasonic diagnostic imaging, the steering of the ultrasonic beam is achieved electronically using the phased array transducer elements. In this paper, a spatial compounding approach is presented where the ultrasonic probe element is rotated mechanically and the beam steering is achieved mechanically. In the spatial compounding, target position is computed using the value of the rotation axis and the transducer array angular position. However, in the process of the rotation mechanism construction and the control system there arises the inevitable uncertainties in these values. These geometric parameter errors result in the target position error, and the consequence is a blurry compounded image. In order to reduce these target position errors, we present a spatial compounding scheme where error correcting transformation matrices are computed and applied to the raw images before spatial compounding to reduce the blurriness in the compounded image. The proposed scheme is illustrated using phantom and live scan images of human knee, and it is shown that the blurriness is effectively reduced.