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Due to uncertainties in target motion and randomness 
of deployed sensor nodes, the problem of imbalance of 
energy consumption arises from sensor scheduling. This 
paper presents an energy-efficient adaptive sensor 
scheduling for a target monitoring algorithm in a local 
monitoring region of wireless sensor networks. Owing to 
excessive scheduling of an individual node, one node with 
a high value generated by a decision function is 
preferentially selected as a tasking node to balance the 
local energy consumption of a dynamic clustering, and the 
node with the highest value is chosen as the cluster head. 
Others with lower ones are in reserve. In addition, an 
optimization problem is derived to satisfy the problem of 
sensor scheduling subject to the joint detection probability 
for tasking sensors. Particles of the target in particle filter 
algorithm are resampled for a higher tracking accuracy. 
Simulation results show this algorithm can improve the 
required tracking accuracy, and nodes are efficiently 
scheduled. Hence, there is a 41.67% savings in energy 
consumption. 
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I. Introduction 

Wireless sensor networks (WSNs) have been widely used in 
many fields. One of the most significant and elementary 
applications is localization and tracking moving targets [1]. A 
major driver for localization within WSNs is driven by 
networks with mobile nodes [2]. The ability to track the targets, 
for example, vehicles, animals, or people, opens up a wide 
range of applications in transport management, agriculture [3], 
military, and health domains [4],[5]. Therefore, the applications 
of localization and tacking moving targets have been an 
important and growing research topic for WSNs [6]. 

The vast majority of previous works in localization within 
sensor networks has focused on theoretical and simulation 
approaches to validation of algorithms [7]-[12]. However, 
energy-based localization in actual implementation is 
necessarily considered by analyzing the consumption in the 
power of the incoming signal. 

With the development of WSNs, selecting only a proper 
group of sensors from an available set to perform tracking is of 
research value [13] in the field of motion monitoring. In [14], 
large-scale sensor array management, from which a small 
subset of available sensors is selected to optimize tracking 
performance, is concerned to track multiple targets. The 
authors in [15] utilize one-step-look-ahead posterior Cramer-
Rao lower bound to estimate the state error for target tracking 
by considering sensor selection with quantized data. A new 
sensor selection scheme for target tracking in binary sensor 
networks using auxiliary particle filter is proposed in [16]. Due 
to limitations of sensing regions of sensors, an adaptive energy-
efficient multisensor scheduling scheme calculating the optimal 
sampling interval, selecting the cluster according to their joint 
detection probability (JDP), designating the cluster head is 
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proposed for collaborative target tracking in [17]. In [18], an 
adaptive active region size algorithm based on the node density 
is proposed to select the optimal nodes taking part in 
localization. The authors in [19] propose a decentralized 
estimation approach considered in WSN using the extended 
information filter for target tracking and a cost function based 
on the geometrical dilution of precision for sensor selection.  

Although sensor selection strategies mentioned above are 
proposed as far as the tradeoff between accuracy and energy 
consumption, the problem that nodes could be excessively 
scheduled in the active region is not considered for both 
localization and target monitoring. This leads to dramatic 
increases in energy consumption of these nodes. To overcome 
the limitations of existing works, this paper presents the 
implementation of energy-efficient adaptive sensor scheduling 
for target monitoring in WSNs. 

The main contribution of this paper is a sensor scheduling 
strategy to balance energy consumption for target monitoring 
in randomly deployed WSNs. First, the decision function is 
applied to select candidate tasking sensor nodes. Second, an 
optimization strategy is proposed to determine which sensor 
node is eventually scheduled. Finally, a particle filter algorithm 
is used to localize the target. Therefore, we actually focus on 
three aspects: accuracy, energy effectiveness, and sensor node 
validity. 

II. Models 

In this section, we present the sensor model, sensor detection 
model, and particle filter algorithm used in the target 
localization. 

1. Sensor Model  

We assume that the sensor model of the system is denoted by  

        , ,( , ), 1, 2,..., .i t i t i t tz h x v i N= =             (1) 

If there are Nt sensors at time t, and 1 2{ , ,..., }
tt NS s s s= is a 

set that involves those sensors taking part in measurement, then 
measurement vector from 1, 2, ,{ , ,..., }

tt t t N tz z z z= is defined by 

         1, 2, ,( , ,..., ) ,
t

T
t t t N tz z z z=               (2) 

where zi, t is the measurement of sensor si, hi(∙) denotes the 
measurement function of sensor si, and vi, t is the measurement 
noise. In this paper, the measurement function is specifically 
described by 

 2 2
, 1, 1, 2, 2, ,( ) ( ) ,

i ii t t s t s i tz x x x x v= − + − +        (3) 

where 1, 2,( , )
i is sx x   indicates that the coordinate of sensor si and 

vi, t is the observation noise which is a Gaussian distribution 

with mean 0 and variance 2
,i tσ ( 1,2,..., ti N= , and Nt is the 

number of senor nodes at time t). 
Several assumptions are made in this paper to resolve the 

problem that happens in the localization and motion 
monitoring system: 

i) The process noise ut and the measurement noise vi, t are 
assumed statistically independent of each other. 

ii) zi, t, 1, 2, , ti N= ⋅⋅⋅ from sensors are independent of each 
other. 

iii) Sensor nodes are aware of their own localization and 
modality. 

iv) All sensors are homogeneous. 

2. Sensor Detection Model 

In most of the existing literature, the sensor detection model 
is a 0-1 model, that is, the transmitted signal is 1 as long as the 
target is within the detection region of a sensor. However, the 
probability that a sensor si detects a target does not equal 1 
usually even though the target is within its detection region. 
Actually, the detection probability [17] is defined by 

        1 2
1 2

, if ( , ) ,
( , )

0,    otherwise,i

i
s

x x
p x x

α ψ∈⎧
= ⎨

⎩
         (4) 

where [0,1]α ∈ , 1 2( , )x x  is the target location, and iψ  is the 
detection region of sensor si. 

The probability density function [20] of the target located at 
1 2( , )T

pX x x= can be defined by 

1
1 2 1/ 2

1 1( , ) exp( ( ( )) ( ( ))).
22

T
p p p pp x x X E X X E X

π
−= ⋅ − − ∑ −

∑

 (5) 
Therefore, the predicted detection probability of sensor si is 
presented as 

         1 2 1 2 1 2Pr( ) ( , ) ( , ) .
ii ss p x x p x x dx dx= ⋅∫∫        (6) 

If a target location denoted by (x1, x2) is covered by n sensors, 
that is, 

1 2
, ,..., ,

ni i is s s  its detection probability will be 
expressed as 

1 2
1

, , , 1 2 1 2( , ) 1 (1 ( , )),
n

i i i in

i

s s s s
i i

p x x p x x⋅⋅⋅
=

= − −∏       (7) 

and the joint detection probability for these n tasking sensors is 
expressed as 

1 2 1 2, , , 1 2 1 2 1 2Pr( , ,..., ) ( , ) ( , ) .
n i i ini i i s s ss s s p x x p x x dx dx⋅⋅⋅= ⋅∫∫  (8) 

III. Particle Filter 

We start with a brief review of the recursive Bayesian 
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estimation method and present a resampling method not to 
suffer from degeneracy problem. 

1. Review of PF 

The purpose here is to recursively calculate the probability 
distribution of xt given the measurement vector, which is 
denoted by 1, 2, ,( , , , )

t

T
t t t N tz z z z= ⋅⋅ ⋅  up to time t. In Bayesian 

theory, the posterior probability density 0:( | )t tp x z can be 
inferred from prior probability density 0: 1( | ) :t tp x z −  

0: 0: 1 0: 1( | ) ( | ) ( | ) / ( | ),t t t t t t t tp x z p z x p x z p z z− −= ⋅    (9) 

where 

   0: 1 0: 1( | ) ( | ) ( | ) .t t t t t t tp z z p z x p x z dx− −= ∫      (10) 

The Monte Carlo simulation method is used to approximate 
the posterior density by N particles 

       0: 1 1 1
1

( | ) ( ).
N

i i
t t t t t

i

p x z x xω δ− − −
=

≈ −∑        (11) 

Usually,  

1 ( | )i i i
t t t tp z xω ω −= . 

The estimated state is finally approximated by 

              
1

ˆ .
n

i i
t t

i
x xω

=

= ∑                (12) 

2. Method of Particle Resampling 

Based on JDP, we assume that St is a set of measurements of 
sensors at time t, 

isR presents the sensor region of node si, 

0ω is the threshold of resample, and 
0

Rω denotes a circle 
whose center is the coordinate of target localization with 
radius 0ω . 

Proposition. Suppose nodes 1 2, ,..., Ns s s are tasking nodes at 
time t in the process of localization and motion monitoring. If 
the coordinate of the target meets 

01, 2,
1

( , ) ( ) ,
i

N
j j

t t s
i

x x R Rω
=

∈ ∩ ∪  

then 
01, 2,

1
( , ) ( )

i

N
j j

t t s
i

x x R Rω
=

∈ ∩ ∪ is a resampled particle we 
need. 

Proof. We utilize the cost function in [21] at time t to explain 
it. For the sake of simplicity, set q=1, N=3, then the cost 
function can be rewritten by 

3 31 1 2 2

1 1 1

2 2 2

( | z )
      ( )

      [ ( )] [ ( )] [ ( )] ,

t t t

t z t

s ss s s s
t z t t z t t z t

C C x
z f x

z f x z f x z f x

+ + +=

= −

= − + − + −

 

where ( ), 1, 2,3,is
z tf x i =  is the measurement function of 

1, 2,( , )t tx x at time t. Let the measurement from sensor node 

2s  satisfy
0

3 3

1, 2,
1 1

( , )
i i

j j
t t s s

i i
x x R R Rω

= =
∈ −∪ ∪ ∩ , and the cost  

function is 

3 31 1 2 2

1, ,

2 2 2
, ,

( | )

( )

       [ ( )] [ ( )] [ ( )] .

t j t j t t

t z t

s ss s s s
t j z t j t z t t z t

C C x z

z f x

z f x z f x z f x

+ =

= −

= − + − + −

 

Owing to 1 1 1 12 2
, ,[ ( )] [ ( )] ,s s s s

t z t t j z t jz f x z f x− < − 1 1,t t jC C+ +<  
is obtained. Similarly, the measurements from s1 and s3 are 
established. Therefore, 

0

3

1, 2,
1

( , )
i

j j
t t s

i
x x R Rω

=
∈∩ ∪  is chosen as a 

resampled particle.                                 � 

IV. Adaptive Dynamic Sensor Scheduling 

Active sensor nodes collect data from the monitoring region 
to localize the target, and others keep sleeping. To schedule 
nodes effectively to avoid from overusing and balance local 
energy consumption, some measures should be taken.    

1. Sensor Selection Algorithm 

In the process of target tracking, some sensor nodes are used 
by clusters in WSNs. This will lead to energy exhaustion and 
death of those sensor nodes. To avoid this problem, a decision 
function, which determines whether a node should be selected 
in the tracking cluster, is proposed to reduce the reused times 
according to the residual energy and times of a single node. 

Set Ps is a decision function in the cluster at time t. It is 
denoted by 

            ( ) ( ) ,r

w

E
Ps N N

E
β= ×             (13) 

where Er and Ew indicate the residual energy and the total 
energy [22] of a node, respectively. The times which a node has 
been used before is denoted by N. A monotonically decreasing 
function on N is described by0 ( ) 1Nβ< ≤ . With the increase 
of N and the decrease of Er, the decision value of a node 
decreases, which means that the feasibility of node selection 
becomes lower. 

In current dynamic monitoring region, every node owes its 
decision value. We descend all nodes according to these values 
and get a set '

1 1{ , , }t NS s s+ = ⋅⋅ ⋅ . 
If 

1 1 2Pr ( , )s dx x θ≥ , the selected set of nodes is 

1 1{ }.tS s+ =  
Otherwise， 1 1 2{ , }.tS s s+ =   

In a similar way, if 
1 2, 1 2Pr ( , ) ,s s dx x θ≥  the selected set of 

nodes is 
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1 1 2 3{ , , }.tS s s s+ =  

More sets will be calculated according to the same procedure 
until

1 2, ,..., 1 2Pr ( , )
ms s s dx x θ≥ , and the tasking cluster for the next 

time t+1 is  

1 1 2 3{ , , ,..., }.t mS s s s s+ =  

In addition to the implementation of localization algorithm, 
the cluster head executes a task of scheduling between selected 
nodes. Let CHt denote cluster head at time t. The cluster head 
CHt+1 is selected by 

max( ( ))
1 1arg min(| |),Ps N

it s i tCH s μ+ += −  

where max( ( ))Ps N
is denotes the node with the highest decision 

value Ps and 1tμ + is a predictive value of the tracked target. 

2. Mathematical Formulation 

We consider the energy balance based on decision function 
and sensor-detection probability model previously. At time t, 
the cluster head determines how tasking nodes should be 
selected to balance the local energy of the monitoring region, 
such that 

min(max( ) min( )),ri rjE E−  

is subject to 
Ps(N), 

and 

1 2, , , 1 2( , )
ms s s dp x x θ⋅⋅⋅ ≥ . 

According to (7), (8), and (13), this problem can be 
expressed as  

min(max( ) min( )),ri rjE E−  

and is subject to 

( ) ( ) r

w

E
Ps N N

E
β= × , 

and 

1 2 1 2 1 2
1

(1 (1 ( , ))) ( , ) ,
i

m

s d
i

p x x p x x dx dx θ
=

− − ⋅ ≥∏∫∫  

which means to minimize difference of energy consumption 
between nodes subject to both the decision function and JDP, 
where Eri and Erj are the residual energy of nodes, i j≠ . 

V. Simulation Results 

In 2D space, the dynamic system in [17] is expressed as  

1 ,t t tx Fx u−= +  

where 1, 2, 1, 2,( , , , )T
t t t t tx x x x x= � �  is the target state vector at time 

t, 1,tx� and 2,tx� indicate the corresponding speeds of coordinates 
of x1,t and x2,t, respectively. The system state transition matrix is 
F and can be defined by 

s s[1 0  0;0 1 0 ;0 0 1 0;0 0 0 1],F T T=  

where Ts is the sampling interval. The process noise ut is a 
Gaussian distribution with mean 0 and variance Q presented as 

2 2{ , } ,T
x yQ Ddiag Dσ σ=  where D is defined by 

2 2
s s s s[ /2 0;0 /2;  0;0 ]D T T T T= . 

In these simulations, we carry out the simulation section in 
MATLAB on a Lenovo Laptop with a 1.6 GHz Core2 Duo 
processor and 2 GB of RAM. Five hundred runs are taken for 
simulations. N=100 sensor nodes with sensor radius R=30 m 
and sampling interval Ts = 1 s are randomly deployed in a 
square field 150 m × 150 m. To facilitate comparison, we 
assume that the process noise variance in particle filter 
is ([0.125 0.125 0.5 0.5]),diag  and the measurement noise 
variance of each sensor node is 1. The sensor detection 
probability α and the threshold dθ are 0.78 and 0.99, 
respectively. At time t = 0, the initial state is 0 [0 0 2 2] ,Tx =  
and the target tracking time continues for 50 s. Two scheduling 
methods are considered. One is a general sensor selection 
algorithm (GSSA), which all sensor nodes are scheduled in a 
cluster at every time interval. The other is dynamic sensor 
selection algorithm (DSSA) proposed in this paper. 

Comparisons of sensor scheduling between GSSA and 
DSSA are shown in Figs. 1 and 2. Generally, the number of 
nodes in DSSA is less than GSSA according to the decision 
function and JDP shown in section IV. In this process, the 
decision function guarantees that tasking sensor nodes are 
selected to eliminate redundant sensor nodes, and JDP is used 
to detect the target. For GSSA, all sensor nodes in a cluster are  
 

 

Fig. 1. Sensor scheduling of DSSA. 
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Fig. 2. Sensor scheduling of GSSA. 
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Fig. 3. Root mean square error of PF and DSSA. 
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scheduled in a cluster at every time interval. This reduces not 
only the redundant information to save channel bandwidth but 
also network cost. So, the performance of DSSA proposed in 
this paper is superior to GSSA. 

Figure 3 describes the root mean square error utilizing 
standard PF and DSSA. The localization accuracy of DSSA 
is relatively higher than PF. The reason is that particles with 
higher threshold are easily chosen from the resampling 
method. Seen from Fig. 3, the error mean of DSSA is 4.0 and 
the one of PF is 4.2. In this sense, DSSA demonstrates a 
better result. 

Comparison results in terms of energy consumption of 
GASS and DSSA are demonstrated in Fig. 4, where MAX1 
and MIN1 are the maximal value and the minimal value of 
GSSA, respectively, and MAX2 and MIN2 are the maximal 
one and the minimal one of DSSA, respectively. Obviously, 
we can note that the energy consumption of individual node 
of GSSA is more than the one of DSSA, while the maximal 
values of GSSA and DSSA are almost equal in the tracking 
process. Especially, the green line varies between 0.47 and  

 

Fig. 4. Residual energy of DSSA and GSSA. 
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Fig. 5. Difference of residual energy of DSSA and GSSA. 
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0.5. In other words, some nodes are continuously reused 
during the monitoring time in GSSA. In this sense, the 
optimization strategy subject to the decision function and JDP 
determines energy consumption of sensor nodes in a cluster 
as far as DSSA. Hence, the proposed scheme presents 
superior performance in energy consumption for target 
tracking. 

Figure 5 distinctly presents the residual energy difference 
between GSSA and DSSA. Due to the introduction of the 
scheduling strategy and the joint detection probability, sensor 
nodes are selected with an optimal solution to rid of sensor 
nodes which have been scheduled before. While reused sensor 
nodes are usually selected by GSSA, therefore, the residual 
energy difference of DSSA is no more than 0.0025 J, and the 
curve is smoother than GSSA whose residual energy difference 
is up to 0.029 J. 

As shown in Fig. 6, the accumulated energy consumption of 
GSSA is 0.24 J, while the one of DSSA is 0.14 J in the 
monitoring process. Obviously, the total energy consumption 
of DSSA decreases by 41.67% compared with GSSA. 
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Fig. 6. Accumulated energy consumption of DSSA and GSSA. 
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VI. Conclusion 

This paper proposed a motion monitoring algorithm based 
on energy balance in local monitoring region of WSNs. An 
improved particle filter algorithm for degeneracy is applied to 
localize the target. Due to the redundant information collected 
from sensor nodes in the cluster, a sensor selection method is 
essential. Then, the problem of sensor selection is exchanged 
into energy optimization subject to the decision function and 
the joint detection probability. Sensor nodes with higher 
decision value are selected under the condition of the joint 
detection probability, and superior performances (that is, 
tracking accuracy, residual energy of a sensor node, 
accumulated energy consumption, and lifetime of WSNs) for 
target tracking are demonstrated. As a result, the energy 
consumption saved is 41.67%. 
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