• Title/Summary/Keyword: target thickness

Search Result 534, Processing Time 0.027 seconds

Initial Growth Mode and Epitaxial Growth of AIN Thin Films on $Al_2O_3(0001)$ Substrate by DC Faced Target Sputtering

  • Kim, Jin-Woo;Kang, Kwang-Yong;Lee, Su-Jae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.368-370
    • /
    • 1999
  • Using DC faced target sputtering method we grow AIN the films on the $Al_2O_3$(0001) substrate with varying thickness(17$\AA$-1000$\AA$). We measured x-ray diffraction(XRD) profiles by synchrotron radiation($\lambda$=1.12839 $\AA$) with four circle diffractometer. The full width half maximum(FWHM) of rocking curve for the AIN (0002) diffraction of the film grown at $500^{\circ}C$ was $0.029^{\circ}$. Also, we confirmed that the stress between AIN thin film and $Al_2O_3$(0001) substrate was reduced as increasing AIN film thickness, and the critical thickness of 400~500 $\AA$, defined as a lattice constant in the film agrees with that in a bulk without stress, was obtained.

  • PDF

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.

Assessment of Compensator Thickness in Proton Therapy (양성자 치료 시 사용되는 Compensator의 Thickness에 대한 적정성 평가)

  • Park, Yong Soo;Jang, Jun Yeong;Cho, Gwang Hyeon;Park, Yong Cheol;Choi, Byeong Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.35-40
    • /
    • 2018
  • Purpose : The range of force differs from the size of proton energy used in our hospital. The compensator enables to change energy size based on distal thickness which also makes changes in dose rate. Therefore, the purpose of this study is to evaluate the effect of changing the thickness of compensator distal on dose range and beam on time. Subject and Methodology : Five low energy patients who have received proton therapy were selected as subjects for this study. Beam on was checked for the selected patients during the existing therapy. After then, the thickness of distal of compensator was increased by 2 cm up to 14 cm through proton therapy plan system(TPS) for comparative analysis. For the evaluation of dose range, the value of the target's conformity index(CI) and the maximum dose of rear side target's organ at risk(OAR) were compared. Furthermore, to evaluate the effect of therapy time, beam on time was compared by making compensator distal in each thickness. Result : The result of homogeneity index and conformity index of the increased compensator distal showed the same level in all patients. The comparison results of OAR of target rear side showed 7 cGy at spine cord of abdomen at maximum, 88 cGy at eyeball's RT lens, 391 cGy at RT lens of nasal cavity 51 cGy at trachea of the mediastinum, and 661 cGy at a small bowl of the pelvis. The comparison results of the beam on time showed a reduction from 126 seconds to 62 seconds for the abdomen, from 105 seconds to 37 seconds for the eyeball, from 187 seconds to 134 seconds for nasal cavity, from 100 seconds to 40 seconds for mediastinum, from 440 seconds to 118 seconds for the pelvis. Conclusion : The research result showed that as the distal thickness of compensator increased, the size of energy increased. In addition, beam on decreased due to the increase of dose rate. It is expected that the result would help reduce the treatment time and increase the convenience of patients if it is applied to liver patients who need respiratorygated therapy and pediatric patients. However, distal penumbra increased as the size energy increased. Therefore, in treating cases where OAR is in the vicinity of the target rear side, the influence of penumbra should be taken into account in adjusting thickness level of the compensator in proton therapy plan.

  • PDF

Property variation of transistor in Gate Etch Process versus topology of STI CMP (STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화)

  • Kim, Sang-Yong;Chung, Hun-Sang;Park, Min-Woo;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STD structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters. we studied the correlation between CMP thickness of STI using high selectivity slurry. DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased. the N-poly foot is deteriorated. and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point,, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by $100\AA$. 3.2 $u\AA$ of IDSN is getting better in base 1 condition. In POE 50% condition. 1.7 $u\AA$ is improved. and 0.7 $u\AA$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

Property variation of transistor in Gate Etch Process versus topology of STI CMP (STI CMP후 Topology에 따른 Gate Etch, Transistor 특성 변화)

  • 김상용;정헌상;박민우;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.181-184
    • /
    • 2001
  • Chemical Mechanical Polishing(CMP) of Shallow Trench Isolation(STI) structure in 0.18 m semiconductor device fabrication is studied. CMP process is applied for the STI structure with and without reverse moat pattern and End Point Detection (EPD) method is tested. To optimize the transistor properties related metal 1 parameters, we studied the correlation between CMP thickness of STI using high selectivity slurry, DOE of gate etch recipe, and 1st metal DC values. Remaining thickness of STI CMP is proportional to the thickness of gate-etch process and this can affect to gate profile. As CMP thickness increased, the N-poly foot is deteriorated, and the P-Poly Noth is getting better. If CD (Critical Dimension) value is fixed at some point, all IDSN/P values are in inverse proportional to CMP thickness by reason of so called Profile Effect. Weve found out this phenomenon in all around DOE conditions of Gate etch process and we also could understand that it would not have any correlation effects between VT and CMP thickness in the range of POE 120 sec conditions. As CMP thickness increased by 100 ${\AA}$, 3.2 u${\AA}$ of IDSN is getting better in base 1 condition. In POE 50% condition, 1.7 u${\AA}$ is improved, and 0.7 u${\AA}$ is improved in step 2 condition. Wed like to set the control target of CD (critical dimension) in gate etch process which can affect Idsat, VT property versus STI topology decided by CMP thickness. We also would like to decide optimized thickness target of STI CMP throughout property comparison between conventional STI CMP with reverse moat process and newly introduced STI CMP using high selectivity slurry. And we studied the process conditions to reduce Gate Profile Skew of which source known as STI topology by evaluation of gate etch recipe versus STI CMP thickness.

  • PDF

Comparison of Target Localization Error between Conventional and Spiral CT in Stereotactic Radiosurgery

  • Kim, Jong-Sik;Ju, Sang-Kyu;Park, Young-Hwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • The accuracy of the target localization was evaluated by conventional and spiral CT in stereotactic radiosurgerv. Conventional and spiral CT images were obtained with geometrical phantom, which was designed to produce exact three-dimensional coordinates of several objects within 0.1mm error range. Geometrical phantom was attached by BRW headframe, intermediate head ring, and CT localizer. Twentv-seven slices of conventional CT image were scanned at 3 mm slice thickness. Spiral CT images were scanned at 3 mm slice thickness from the pitch value 1 to 3, and twenty-seven slices of image were obtained per each the pitch value. These CT images were transferred to a treatment planning system(X-knife, Radionics) by ethernet, Three-dimensional coordinates of these images measured from the treatment planning system were compared to known values of geometrical phantom. The mean localization error of the target localization of conventional CT was 1.4mm. In case of spiral CT, the error of the target localization was within 1.6mm from the pitch value 1 to 1.3, but was more than 30mm above the pitch value 1.5. In conclusion, as the localization error of spiral CT was increased in high pitch value compared to conventional CT, the application of spiral CT will be with caution in stereotactic radiosurgery.

  • PDF

Manufacturing and Macroscopic Properties of Cold Sprayed Cu-Ga Coating Material for Sputtering Target

  • Jin, Young-Min;Jeon, Min-Gwang;Park, Dong-Yong;Kim, Hyung-Jun;Oh, Ik-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.245-252
    • /
    • 2013
  • This study attempted to manufacture a Cu-Ga coating layer via the cold spray process and to investigate the applicability of the layer as a sputtering target material. In addition, changes made to the microstructure and properties of the layer due to annealing heat treatment were evaluated, compared, and analyzed. The results showed that coating layers with a thickness of 520 mm could be manufactured via the cold spray process under optimal conditions. With the Cu-Ga coating layer, the ${\alpha}$-Cu and $Cu_3Ga$ were found to exist inside the layer regardless of annealing heat treatment. The microstructure that was minute and inhomogeneous prior to thermal treatment changed to homogeneous and dense with a more clear division of phases. A sputtering test was actually conducted using the sputtering target Cu-Ga coating layer (~2 mm thickness) that was additionally manufactured via the cold-spray coating process. Consequently, this test result confirmed that the cold sprayed Cu-Ga coating layer may be applied as a sputtering target material.

Optimum Parameter Values for A Metal Plating Process (금속도금공정에서의 최적 모수 값 결정)

  • Kim, Young-Jin;Hong, Sung-Hoon;Lee, Min-Koo;Kwon, Hyuck-Moo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.3
    • /
    • pp.337-343
    • /
    • 2008
  • The problem of determining the optimum metal plating thicknesses on the plane and curved surfaces of an electronic part is considered. A lower specification limit for the plating thickness is usually pre-specified. In most applications, the plating thickness on the curved surface is proportional to that on the plane surface. The proportion can be adjusted by adding chemical catalysts to the plating fluid. From the economic point of view, nonconforming items with a thickness smaller than the lower specification limit incur rejection costs, such as rework and scrap costs, while a thicker plating may incur an excessive material costs. In this article, an economic model is proposed for simultaneously determining the target plating thickness and the ratio of the plating thickness on the plane surface to that on the curved surface. An illustrative example demonstrates the applicability of the proposed model.

A Study on Characterization and Modeling of Shallow Trench Isolation in Oxide Chemical Mechanical Polishing

  • Kim, Sang-Yong;Chung, Hun-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.3
    • /
    • pp.24-27
    • /
    • 2001
  • The end point of oxide chemical mechanical polishing (CMP) have determined by polishing time calculated from removal rate and target thickness of oxide. This study is about control of oxide removal amounts on the shallow trench isolation (STI) patterned wafers using removal rate and thickness of blanket (non-patterned) wafers. At first, it was investigated the removal properties of PETEOS blanket wafers, and then it was compared with the removal properties and the planarization (step height) as a function of polishing time of the specific STI patterned wafers. We found that there is a relationship between the oxide removal amounts of blanket and patterned wafers. We analyzed this relationship, and the post CMP thickness of patterned wafers could be controlled by removal rate and removal target thickness of blanket wafers. As the result of correlation analysis, we confirmed that there was the strong correlation between patterned and blanket wafer (correlation factor: 0.7109). So, we could confirm the repeatability as applying for STI CMP process from the obtained linear formula. As the result of repeatability test, the differences of calculated polishing time and actual polishing time was about 3.48 seconds. If this time is converted into the thickness, then it is from 104 $\AA$ to 167 $\AA$. It is possible to be ignored because process margin is about 1800 $\AA$.

  • PDF

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF