• Title/Summary/Keyword: taper

Search Result 662, Processing Time 0.021 seconds

The Effect of Surface Defects on the Cyclic Fatigue Fracture of HEROShaper Ni-Ti rotary files in a Dynamic Model: A Fractographic Analysis (Fractographic 분석을 통한 HEROShaper 니켈티타늄 전동 파일의 피로파절에 미치는 표면결함의 역할)

  • Lee, Jung-Kyu;Kim, Eui-Sung;Kang, Myoung-Whai;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.2
    • /
    • pp.130-137
    • /
    • 2007
  • This in vitro study examined the effect of surface defects on cutting blades on the extent of the cyclic fatigue fracture of HEROShaper Ni-Ti rotary files using fractographic analysis of the fractured surfaces. A total of 45 HEROShaper (MicroMega) Ni-Ti rotary flies with a #30/.04 taper were divided into three groups of 15 each. Group 1 contained new HEROShapers without any surface defects. Group 2 contained HEROShapers with manufacturing defects such as metal rollover and machining marks. Croup 3 contained HEROShapers that had been clinically used for the canal preparation of 4-6 molars A fatigue-testing device was designed to allow cyclic tension and compressive stress on the tip of the instrument whilst maintaining similar conditions to those experienced in a clinic. The level of fatigue fracture time was measured using a computer connected the system. Statistical analysis was performed using a Tukey's test. Scanning electron microscopy (SEM) was used for fractographic analysis of the fractured surfaces. The fatigue fracture time between groups 1 and 2, and between groups 1 and 3 was significantly different (p<0.05) but there was no significant difference between groups 2 and 3 (p>0.05). A low magnification SEM views show brittle fracture as the main initial failure mode At higher magnification, the brittle fracture region showed clusters of fatigue striations and a large number of secondary cracks. These fractures typically led to a central region of catastrophic ductile failure. Qualitatively, the ductile fracture region was characterized by the formation of microvoids and dimpling. The fractured surfaces of the HEROShapers in groups 2 and 3 were always associated with pre-existing surface defects. Typically, the fractured surface in the brittle fracture region showed evidence of cleavage (transgranular) facets across the grains, as well as intergranular facets along the grain boundaries. These results show that surface defects on cutting blades of Ni-Ti rotary files might be the preferred sites for the origin of fatigue fracture under experimental conditions. Furthermore this work demonstrates the utility of fractography in evaluating the failure of Ni-Ti rotary flies.

Effect of Implant Types and Bone Resorption on the Fatigue Life and Fracture Characteristics of Dental Implants (임플란트 형태와 골흡수가 임플란트 피로 수명 및 파절 특성에 미치는 효과에 관한 연구)

  • Won, Ho-Yeon;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.121-143
    • /
    • 2010
  • To investigate the effect of implant types and bone resorption on the fracture characteristics. 4 types of Osstem$^{(R)}$Implant were chosen and classified into external parallel, internal parallel, external taper, internal taper groups. Finite elements analysis was conducted with ANSYS Multi Physics software. Fatigue fracture test was performed by connecting the mold to the dynamic load fatigue testing machine with maximum load of 600N and minimum load of 60N. The entire fatigue test was performed with frequency of 14Hz and fractured specimens were observed with Hitachi S-3000 H scanning electron microscope. The results were as follows: 1. In the fatigue test of 2 mm exposed implants group, Tapered type and external connected type had higher fatigue life. 2. In the fatigue test of 4 mm exposed implants group, Parallel type and external connected types had higher fatigue life. 3. The fracture patterns of all 4 mm exposed implant system appeared transversely near the dead space of the fixture. With a exposing level of 2 mm, all internally connected implant systems were fractured transversely at the platform of fixture facing the abutment. but externally connected ones were fractured at the fillet of abutment body and hexa of fixture or near the dead space of the fixture. 4. Many fatigue striations were observed near the crack initiation and propagation sites. The cleavage with facet or dimple fractures appeared at the final fracture sites. 5. Effective stress of buccal site with compressive stress is higher than that of lingual site with tensile stress, and effective stress acting on the fixture is higher than that of the abutment screw. Also, maximum effective stress acting on the parallel type fixtures is higher. It is careful to use the internal type implant system in posterior area.

EFFECT OF CROSS-SECTIONAL AREA OF 6 NICKEL-TITANIUM ROTARY INSTRUMENTS ON THE FATIGUE FRACTURE UNDER CYCLIC FLEXURAL STRESS: A FRACTOGRAPHIC ANALYSIS (반복 굽힘 스트레스 하에서 전동식 니켈-티타늄 파일의 단면적의 크기가 피로파절에 미치는 영향 : 파절역학 분석)

  • Hwang, Soo-Youn;Oh, So-Ram;Lee, Yoon;Lim, Sang-Min;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.424-429
    • /
    • 2009
  • This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with. 04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a $60^{\circ}$ angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.

Comparison of shaping ability between single length technique and crown-down technique using Mtwo rotary file (Mtwo 전동 파일을 사용한 single length technique과 crown-down technique의 근관성형 효율 비교)

  • Lim, Yoo-Kyoung;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.385-396
    • /
    • 2007
  • The aims of this study were to compare the shaping effect and safety between single length technique recommended by manufacturer and crown-down technique using Mtwo rotary file and to present a modified method in use of Mtwo file. Sixty simulated root canal resin blocks were used. The canals were divided into three groups according to instrument and the manner of using methods. Each group had 20 specimens. Group MT was instrumented with single length technique of Mtwo, group MC was instrumented with crown-down technique of Mtwo and group PT was instrumented with crown-down technique of ProTaper. All of the rotary files used in this study were operated by an electric motor. The scanned canal images of before and after preparation were superimposed. These superimposed images were evaluated at apical 1 to 8 mm levels Angle changes were calculated. The preparation time, weight loss, instrument failure and binding, canal aberrations, and centering ratio were measured. Statistical analysis of the three experimental groups was performed with ANOVA and Duncan's multiple range tests for post-hoc comparison and Fisher's exact test was done for the frequency comparison. In total preparation time, group MT and group MC were less than group PT. In the aberrations, group MT had more elbows than those of group MC and group PT. The binding of group MC was least and group MT was less than group PT (P < 0.05). Under the condition of this study, crown-down technique using Mtwo rotary file is better and safer method than single length technique recommended by the manufacturer.

Selective growth of GaN nanorods on the top of GaN stripes (GaN stripe 꼭지점 위의 GaN 나노로드의 선택적 성장)

  • Yu, Yeonsu;Lee, Junhyeong;Ahn, Hyungsoo;Shin, Kisam;He, Yincheng;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • GaN nanorods were grown on the apex of GaN stripes by three dimensional selective growth method. $SiO_2$ mask was partially removed only on the apex area of the GaN stripes by an optimized photolithography for the selective growth. Metallic Au was deposited only on the apex of the GaN stripes and a selective growth of GaN nanorods was followed by a metal organic vapor phase epitaxy (MOVPE). We confirmed that the shape and size of the GaN nanorods depend on growth temperature and flow rates of group III precursor. GaN nanorods were grown having a taper shape which have sharp tip and triangle-shaped cross section. From the TEM result, we confirmed that threading dislocations were rarely observed in GaN nanorods because of the very small contact area for the selective growth. Stacking faults which might be originated from a difference of the crystal facet directions between the GaN stripe and the GaN nanorods were observed in the center area of the GaN nanorods.

Influence of plugger penetration depth on the apical extrusion of root canal sealer in Continuous Wave of Condensation Technique (플러거 삽입깊이가 근관실러의 치근단 정출에 미치는 영향)

  • So Ho-Young;Lee Young-Mi;Kim Kwang-Keun;Kim Ki-Ok;Kim Young-Kyung;Kim Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.5
    • /
    • pp.439-445
    • /
    • 2004
  • The purpose of this study was to evaluate the influence of plugger penetration depth on the apical extrusion of root canal sealer during root canal obturation with Continuous Wave of Condensation Technique. Root canals of forty extracted human teeth were divided into four groups and were prepared up to size 40 of 0.06 taper with ProFile. After drying. canals of three groups were filled with Continuous Wave of Condensation Technique with System $B^{TM}$ and different plugger penetration depths of 3. 5, and 7 mm from the apex. Canals of one group were filled with cold lateral compaction technique as a control. Canals were filled with non-standardized master gutta-percha cones and 0.02 mL of Sealapex. Apical extruded sealer was collected in a container and weighed. Data was analyzed with one-way ANOVA and Duncan's Multiple Range Test. 3 and 5 mm penetration depth groups in Continuous Wave of Condensation Technique showed significantly more extrusion of root canal sealer than 7 mm penetration depth group (p < 0.05). However, there was no significant difference between 7 mm depth group in Continuous Wave of Condensation Technique and cold lateral compaction group (p < 0.05). The result of this study demonstrates that deeper plugger penetration depth causes more extrusion of root canal sealer in root canal obturation by Continuous Wave of Condensation Technique. Therefore, special caution is needed when plugger penetration is deeper in the canal in Continuous Wave of Condensation Technique to minimize the amount of sealer extrusion beyond apex.

EFFECTS OF VARIOUS CEMENTS AND THERMOCYCLING ON RETENTIVE STRENGTHS OF CEMENTED IMPLANT-SUPPORTED PROSTHESES (시멘트 유지형 임플란트 보철물의 유지력에 시멘트의 종류와 열순환이 미치는 영향에 관한 연구)

  • Cho Jae-Ho;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.466-475
    • /
    • 2003
  • Statement of problem : In cemented implant-supported porstheses, it is still controversy what kind of cement to use. However, the effect of thermocycling on retentive strength of cemented implant-supported prostheses has not been well investigated. Purpose : This study was tested to evaluate the effects of various cements and thermocycling on retentive strengths of cemented implant-supported prostheses. Material and methods : Prefabricated implant abutments, height 5mm, diameter 6mm, 3-degree taper per side, with light chamfer margins were used. Ten specimens of two-unit fred partial denture were fabricated. The luting agents used for this study were three provisional luting agents which were Temp bond, Temp bond NE, IRM and four permanent luting agents which were Panavia F, Fuji-cem, Hy-bond Zinc cement, Hy-bond Polycarboxylate cement. 24 hours after cementation. the retentive strengths were measured by the universal testing machine with a cross-head speed of 0.5mm/min. Then cementation procedures were repeated and specimens were thermocycled 1000 times at temperature of $5^{\circ}C$ and $55^{\circ}C$. After thermocycling, the retentive strengths were measured. Results : Before thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem. Hy-bond Zinc cement. Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were significant differences among each groups(p<0.05). After thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem, Hybond Zinc cement, Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were no significant differences among Panavia F, Fuji-cem and Temp bond NE, Temp bond(p>0.05). The retentive strengths before and after thermocycling showed significant differences in Hy-bond Zinc cement. IRM, Temp bond NE and Temp bond(p<0.05). Conclusion : Within the limitation of this study, thermocycling do not affect the retentive strengths of permanent luting agents but the retentive strengths of temporary cements were reduced significantly after thermocyling.

IN VITRO STUDY OF THE TENSILE BOND STRENGTH OF CEMENT-RETAINED SINGLE IMPLANT PROSTHESIS BY THE VARIOUS PROVISIONAL LUTING CEMENTS AND THE SURFACE TREATMENT OF ABUTMENTS

  • Lee, Hwa-Yeon;Lee, Ho-Sang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.296-305
    • /
    • 2002
  • The main disadvantage of cement-retained implant restorations is their difficulty in retrievability. Advocates of cemented implant restorations frequently state that retrievability of the restoration can be maintained if a provisional cement is used. The purpose of this study was to find the optimal properties of provisional luting cements and the surface treatment of abutments in single implant abutment system. 30 prefabricated implant abutments, height 8mm, diameter 6mm, 3-degree taper per side, with light chamfer margins were obtained. Three commercially available provisional luting agents which were all zinc oxide eugenol type ; Cavitec, TempBond and TempBond NE were evaluated. No cement served as the control. TempBond along with vaseline, a kind of petrolatum (2:1 ratio) was also evaluated. Ten out of thirty abutments were randomly selected and abutment surfaces were sandblasted with $50{\mu}m$ aluminum oxide. Another ten abutments were sandblasted with $250{\mu}m$ aluminum oxide. A vertical groove, 1 mm deep and 5mm long was cut in each twenty abutments. Ten of them were sandblasted with $50{\mu}m$ aluminum oxide. The full coverage casting crowns were cemented to the abutments with the designated provisional luting agent. Specimens were stored in distilled water at $37^{\circ}C$ for 24 hours. Each specimen was attached to a universal testing machine. A crosshead speed of 0.5mm/min was used to apply a tensile force to each specimen. Within the limitations of this in vitro study, the following conclusions were drawn: 1. Tensile bond strength of provisional luting cements in no surface treatment decreased with the sequence of TempBond NE, TempBond, Cavitec, TempBond with vaseline, no cement. 2. Tensile bond strength more increased by surface treatment. Sandblasting with $250{\mu}m$ aluminum oxide exhibited the highest tensile bond strength in the abutment cemented with TempBond NE and sandblasting with $50{\mu}m$ aluminum oxide exhibited the highest tensile bond strength in cemented with TempBond. 3. In the aspect of a groove formation, tensile bond strength significantly increased in TempBond with vaseline only and the others had no significant effect on tensile bond strength.

Joint stability of internal conical connection abutments with or without hexagon indexes: an in vitro study (내부연결 원추형 임플란트의 육각구조의 유무에 따른 연결부 안정성: 실험적 연구)

  • Lee, Sang-Woon;Cha, Min-Sang;Lee, Ji-Hye;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.2
    • /
    • pp.95-103
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the axial displacement of the hexagonal and conical abutment in internal conical connection implant after screw tightening and cyclic loading. Materials and Methods: Internal conical connection implants were divided into two groups (n = 10): group HEX, hexagonal abutment; and group CON, conical 2-piece abutments. The axial displacement and removal torque values were measured after 30 Ncm torque tightening and 250N loading test of 100,000 cycles. The Student t test with 5% significance level was used to evaluate the data. Results: HEX group demonstrated significantly higher axial displacement values after 30 Ncm tightening in comparison to the CON group (P < 0.05). No significant difference was found in axial displacement after cyclic loading (P = 0.052). Removal torque loss before and after the cyclic loading both revealed no significant difference between groups (P = 0.057 and P = 0.138). Removal torque value decreased after cyclic loading in both groups (P < 0.05). Conclusion: Overall, both abutment with or without hexagon index presented similar biomechanical performance except HEX group demonstrated significantly more axial displacement after applying tightening torque.

Development of a Wood Recovery Estimation Model for the Tree Conversion Processes of Larix kaempferi (낙엽송 제재에 따른 이용재적 산출 모델의 개발)

  • Kwon, Kibeom;Han, Hee;Seol, Ara;Chung, Hyejean;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.484-490
    • /
    • 2013
  • This study was conducted to develop a simulation model for estimating the amount of such products as round wood, dimension lumber and the residual wood biomass produced by processing the individual trees of Larix kaempferi. In the model, the stem volume is assessed using the taper equations of the species to estimate the stem forms. Then, the model simulates the conversion processes of logs to round wood or lumber and assesses the maximum amount of the wood products by the lumber dimensions or round wood size. Also the model provides information on the amount of residuals for kerf and slabs produced on the conversion processes for sawn timber or round wood. According to the results of an application of the model to a L. kaempferi process, the trees greater than 12 cm of DBH can be converted to logs for lumber or round wood production. For the trees, of which DBH is available for log conversion, the maximum amount of final products by dimensions were analyzed. In this analysis, production of the bigger dimension lumber was assumed to be preferred to that of the smaller or round wood. This model can be used for assesment of forest economic value through estimation of merchantable volume for the trees, and assessment of mill residues which has the potential to provide significant amount of feedstock for bioenergy production as well.