DOI QR코드

DOI QR Code

내부연결 원추형 임플란트의 육각구조의 유무에 따른 연결부 안정성: 실험적 연구

Joint stability of internal conical connection abutments with or without hexagon indexes: an in vitro study

  • 이상운 (울산대학교 의과대학 강릉아산병원 치과) ;
  • 차민상 (울산대학교 의과대학 강릉아산병원 치과) ;
  • 이지혜 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 박찬진 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소)
  • Lee, Sang-Woon (Department of Dentistry, Gangneung Asan Hospital, University of Ulsan, College of Medicine) ;
  • Cha, Min-Sang (Department of Dentistry, Gangneung Asan Hospital, University of Ulsan, College of Medicine) ;
  • Lee, Ji-Hye (Department of Prosthodontics and Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Cho, Lee-Ra (Department of Prosthodontics and Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Park, Chan-Jin (Department of Prosthodontics and Research Institute of Oral Science, Gangneung-Wonju National University)
  • 투고 : 2020.05.27
  • 심사 : 2020.05.28
  • 발행 : 2020.06.30

초록

목적: 본 연구의 목적은 내부연결 원추형 임플란트의 육각구조 유무가 임플란트 지대주 장축변위와 임플란트 지대주 나사의 풀림토크에 미치는 영향을 평가하고자 하였다. 연구 재료 및 방법: 내부연결 원추형 임플란트를 육각구조를 가진 지대주 그룹(HEX)과 육각구조를 갖지 않는 지대주 그룹(CON)으로 나누고 각 그룹 당 10쌍의 시편을 체결하였다. 지대주 나사를 30 Ncm 조임회전력을 가하여 체결한 뒤 장축변위 및 풀림토크값을 측정하고 250 N 수직적 반복하중을 100,000회 가한 뒤 장축변위 및 풀림토크값을 측정하였다. 각 단계마다 디지털 마이크로미터를 이용하여 임플란트 직경과 수직적 높이를 측정하였고 전자 토크게이지를 이용하여 풀림토크값을 측정하였다. 각 군간의 값의 유의차를 확인하기 위하여 독립 표본 T 검정을 이용하여 통계분석하였다(α = 0.05). 결과: HEX 군은 조임회전력을 가한 뒤 유의하게 높은 장축변위를 나타내였다(P < 0.05). HEX 군과 CON 군은 수직적 반복하중 후 장축변위에 유의한 차이를 보이지 않았다(P = 0.052). HEX 군과 CON 군은 수직적 반복하중 전, 후 풀림토크값 모두 유의한 차이를 보이지 않았다(P = 0.057 and P = 0.138). 모든 그룹에서 반복하중 후 풀림토크값 상실율이 증가하였다(P < 0.05). 결론: 내부연결 원추형 임플란트에서 육각구조를 가진 경우 장축 변위가 더 컸으며, 그 외의 연결부 안정성은 유사하였다. 모든 그룹에서 반복하중 후 풀림토크값 상실율이 증가하였다.

Purpose: The purpose of this study was to compare the axial displacement of the hexagonal and conical abutment in internal conical connection implant after screw tightening and cyclic loading. Materials and Methods: Internal conical connection implants were divided into two groups (n = 10): group HEX, hexagonal abutment; and group CON, conical 2-piece abutments. The axial displacement and removal torque values were measured after 30 Ncm torque tightening and 250N loading test of 100,000 cycles. The Student t test with 5% significance level was used to evaluate the data. Results: HEX group demonstrated significantly higher axial displacement values after 30 Ncm tightening in comparison to the CON group (P < 0.05). No significant difference was found in axial displacement after cyclic loading (P = 0.052). Removal torque loss before and after the cyclic loading both revealed no significant difference between groups (P = 0.057 and P = 0.138). Removal torque value decreased after cyclic loading in both groups (P < 0.05). Conclusion: Overall, both abutment with or without hexagon index presented similar biomechanical performance except HEX group demonstrated significantly more axial displacement after applying tightening torque.

키워드

참고문헌

  1. Cehreli MC, Akca K, Iplikcioglu H, Sahin S. Dynamic fatigue resistance of implant-abutment junction in an internally notched morse-taper oral implant: influence of abutment design. Clin Oral Implants Res 2004;15:459-65. https://doi.org/10.1111/j.1600-0501.2004.01023.x
  2. Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res 1997;8:290-8. https://doi.org/10.1034/j.1600-0501.1997.080407.x
  3. Norton MR. Assessment of cold welding properties of the internal conical interface of two commercially available implant systems. J Prosthet Dent 1999;81:159-66. https://doi.org/10.1016/S0022-3913(99)70243-X
  4. Norton MR. An in vitro evaluation of the strength of a 1-piece and 2-piece conical abutment joint in implant design. Clin Oral Implants Res 2000;11:458-64. https://doi.org/10.1034/j.1600-0501.2000.011005458.x
  5. Budynas RG, Nisbett JK. Shigley's mechanical engineering design. 9th ed. New York; McGraw-Hill; 2011.
  6. Schmitt CM, Nogueira-Filho G, Tenenbaum HC, Lai JY, Brito C, Doring H, Nonhoff J. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A 2014;102:552-74. https://doi.org/10.1002/jbm.a.34709
  7. Lee JH, Lee W, Huh YH, Park CJ, Cho LR. Impact of intentional overload on joint stability of internal implant-abutment connection system with different diameter. J Prosthodont 2019;28:e649-e56. https://doi.org/10.1111/jopr.12661
  8. Lee JH, Kim DG, Park CJ, Cho LR. Axial displacements in external and internal implant-abutment connection. Clin Oral Implants Res 2014;25:e83-9. https://doi.org/10.1111/clr.12062
  9. Seol HW, Heo SJ, Koak JY, Kim SK, Kim SK. Axial displacement of external and internal implantabutment connection evaluated by linear mixed model analysis. Int J Oral Maxillofac Implants 2015;30:1387-99. https://doi.org/10.11607/jomi.3857
  10. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res 2000;11 Suppl 1:156-8. https://doi.org/10.1034/j.1600-0501.2000.011S1156.x
  11. Guzaitis KL, Knoernschild KL, Viana MA. Effect of repeated screw joint closing and opening cycles on implant prosthetic screw reverse torque and implant and screw thread morphology. J Prosthet Dent 2011;106:159-69. https://doi.org/10.1016/S0022-3913(11)60115-7
  12. Xia D, Lin H, Yuan S, Bai W, Zheng G. Dynamic fatigue performance of implant-abutment assemblies with different tightening torque values. Biomed Mater Eng 2014;24:2143-9.
  13. Bernardes SR, da Gloria Chiarello de Mattos M, Hobkirk J, Ribeiro RF. Loss of preload in screwed implant joints as a function of time and tightening/untightening sequences. Int J Oral Maxillofac Implants 2014;29:89-96. https://doi.org/10.11607/jomi.3344
  14. Cho WR, Huh YH, Park CJ, Cho LR. Effect of cyclic loading and retightening on reverse torque value in external and internal implants. J Adv Prosthodont 2015;7:288-93. https://doi.org/10.4047/jap.2015.7.4.288
  15. Pintinha M, Camarini ET, Sabio S, Pereira JR. Effect of mechanical loading on the removal torque of different types of tapered connection abutments for dental implants. J Prosthet Dent 2013;110:383-8. https://doi.org/10.1016/j.prosdent.2013.06.007
  16. Ding TA, Woody RD, Higginbottom FL, Miller BH. Evaluation of the ITI Morse taper implant/abutment design with an internal modification. Int J Oral Maxillofac Implants 2003;18:865-72.
  17. Ricciardi Coppede A, de Mattos Mda G, Rodrigues RC, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study. Clin Oral Implants Res 2009;20:624-32. https://doi.org/10.1111/j.1600-0501.2008.01690.x
  18. Kim KS, Han JS, Lim YJ. Settling of abutments into implants and changes in removal torque in five different implant-abutment connections. Part 1: Cyclic loading. Int J Oral Maxillofac Implants 2014;29:1079-84. https://doi.org/10.11607/jomi.3383
  19. Martins CM, Ramos EV, Kreve S, de Carvalho GAP, Franco ABG, de Macedo LGS, de Moura Silva A, Dias SC. Reverse torque evaluation in indexed and nonindexed abutments of Morse Taper implants in a mechanical fatigue test. Dent Res J (Isfahan) 2019;16:110-16. https://doi.org/10.4103/1735-3327.250967
  20. Piermatti J, Yousef H, Luke A, Mahevich R, Weiner S. An in vitro analysis of implant screw torque loss with external hex and internal connection implant systems. Implant Dent 2006;15:427-35. https://doi.org/10.1097/01.id.0000245440.09464.48
  21. de Oliveira Silva TS, Mendes Alencar SM, da Silva Valente V, de Moura C. Effect of internal hexagonal index on removal torque and tensile removal force of different Morse taper connection abutments. J Prosthet Dent 2017;117:621-27. https://doi.org/10.1016/j.prosdent.2016.07.024
  22. Perriard J, Wiskott WA, Mellal A, Scherrer SS, Botsis J, Belser UC. Fatigue resistance of ITI implantabutment connectors - a comparison of the standard cone with a novel internally keyed design. Clin Oral Implants Res 2002;13:542-9. https://doi.org/10.1034/j.1600-0501.2002.130515.x
  23. Cho SY, Huh YH, Park CJ, Cho LR. Three-dimensional finite element analysis on stress distribution of internal implant-abutment engagement features. Int J Oral Maxillofac Implants 2018;33:319-27. https://doi.org/10.11607/jomi.5789
  24. Cho SY, Huh YH, Park CJ, Cho LR. Three-dimensional finite element analysis of the stress distribution at the internal implant-abutment connection. Int J Periodontics Restorative Dent 2016;36:e49-58.
  25. Anami LC, da Costa Lima JM, Takahashi FE, Neisser MP, Noritomi PY, Bottino MA. Stress distribution around osseointegrated implants with different internal-cone connections: photoelastic and finite element analysis. J Oral Implantol 2015;41:155-62. https://doi.org/10.1563/AAID-JOI-D-12-00260
  26. Saidin S, Abdul Kadir MR, Sulaiman E, Abu Kasim NH. Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation. J Dent 2012;40:467-74. https://doi.org/10.1016/j.jdent.2012.02.009
  27. Squier RS, Psoter WJ, Taylor TD. Removal torques of conical, tapered implant abutments: the effects of anodization and reduction of surface area. Int J Oral Maxillofac Implants 2002;17:24-7.
  28. Kwon TK, Yang JH, Kim SH, Han JS, Lee JB. A comparative study of the 1-piece and 2-piece conical abutment joint: the strength and the fatigue resistance. J Korean Acad Prosthodont 2007;45:780-86.
  29. Cerutti-Kopplin D, Rodrigues Neto DJ, Lins do Valle A, Pereira JR. Influence of reverse torque values in abutments with or without internal hexagon indexes. J Prosthet Dent 2014;112:824-7. https://doi.org/10.1016/j.prosdent.2014.03.004
  30. Villarinho EA, Cervieri A, Shinkai RS, Grossi ML, Teixeira ER. The effect of a positioning index on the biomechanical stability of tapered implant-abutment connections. J Oral Implantol 2015;41:139-43. https://doi.org/10.1563/AAID-JOI-D-12-00245
  31. Siamos G, Winkler S, Boberick KG. Relationship between implant preload and screw loosening on implant-supported prostheses. J Oral Implantol 2002;28:67-73. https://doi.org/10.1563/1548-1336(2002)028<0067:TRBIPA>2.3.CO;2
  32. Bozkaya D, Muftu S. Mechanics of the tapered interference fit in dental implants. J Biomech 2003;36:1649-58. https://doi.org/10.1016/S0021-9290(03)00177-5
  33. Bozkaya D, Muftu S. Mechanics of the taper integrated screwed-in (TIS) abutments used in dental implants. J Biomech 2005;38:87-97. https://doi.org/10.1016/j.jbiomech.2004.03.006
  34. Binon PP. Evaluation of the effectiveness of a technique to prevent screw loosening. J Prosthet Dent 1998;79:430-2. https://doi.org/10.1016/S0022-3913(98)70157-X
  35. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants 1995;10:529-36.
  36. da Silva Prado L, da Silva J, Garcia ALH, Boaretto FBM, Grivicich I, Conter LU, de Oliveira Salvi A, Reginatto FH, Vencato SB, de Barros Falcao Ferraz A, Picada JN. Evaluation of DNA damage in HepG2 cells and mutagenicity of garcinielliptone FC, a bioactive benzophenone. Basic Clin Pharmacol Toxicol 2017;120:621-27. https://doi.org/10.1111/bcpt.12753
  37. Lee JH, Huh YH, Park CJ, Cho LR. Effect of the coronal wall thickness of dental implants on the screw joint stability in the internal implant-abutment connection. Int J Oral Maxillofac Implants 2016;31:1058-65.
  38. Karl M, Taylor TD. Effect of cyclic loading on micromotion at the implant-abutment interface. Int J Oral Maxillofac Implants 2016;31:1292-7. https://doi.org/10.11607/jomi.5116

피인용 문헌

  1. Abutment screw loosening in implants: A literature review vol.9, pp.11, 2020, https://doi.org/10.4103/jfmpc.jfmpc_1343_20