• Title/Summary/Keyword: tangential radial ratio

Search Result 59, Processing Time 0.017 seconds

Comparative Anatomy of Secondary Xylem in Normal and Dwarf Individuals of Some Wood Plants (수 종의 목본식물에 있어서 정상 및 왜소개체의 이기목부의 비교해부)

  • 임동옥
    • Journal of Plant Biology
    • /
    • v.34 no.1
    • /
    • pp.9-18
    • /
    • 1991
  • This study deals with the effect of dwarf growth on xylem structure, especially on the dimension of xylem elements described for 12 species of naturally occuring dwarf trees. The length and tangential diameter of tracheary elements and fibers in dwarf trees appear to be shorter and narrower than those in normal trees. Radial width and cell number of the same annual rings are narrower and smaller in dwarf trees than those in normal trees. Height of rays in dwarf trees is lower than that in normal trees. Dwarf conifers appear to have higher ratio, of latewood to earlywood than that in normal trees. In the hardwood species studied, mesomorphy of vessel elements is lower in dwarfs than that in normal trees. It can be concluded that this dwarf growth occurs as a result of extremely slow growth by environmental stress such as water deficiency.ciency.

  • PDF

Dimensional Responses of Wood Under Cyclical Changing Temperature at Constant Relative Humidity

  • Yang, Tiantian;Ma, Erni;Shi, Yi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.539-547
    • /
    • 2015
  • To investigate dimensional responses of wood under dynamic temperature condition, poplar (populous euramericana Cv.) specimens, 20 mm in radial (R) and tangential (T) directions with two thicknesses of 4 and 10 mm along the grain, were exposed to cyclic temperature changes in square wave between $25^{\circ}C$ and $40^{\circ}C$ at 60% relative humidity (RH) for three different cycling periods of 6 h, 12 h and 24 h. R and T dimensional changes measured during the cycling gave the following results: 1) Transverse dimensional changes of the specimens were generally square but at an opposite phase and lagged behind the imposed temperature changes. The phase lag was inversely correlated with cycling period, but positively related to specimen thickness, while the response amplitude was directly proportional to cycling period, but in a negative correlation with specimen thickness. 2) The specimens showed swelling hysteresis behavior. The heat shrinkage coefficient (HSC) became greater as cycling period increased or specimen thickness decreased. 3) Dimensional changes of the specimens produced deformation accumulation during repeated adsorption and desorption. The deformation accumulating ratio decreased with an increase in cycling period and specimen thickness. 4) Wood suffered 1.5 times as many dimensional changes per unit temperature variation as per unit humidity variation, and this deformation behaved even more seriously under static condition.

Physical and Mechanical Properties of Local Styrax Woods from North Tapanuli in Indonesia

  • Iswanto, Apri Heri;Susilowati, Arida;Azhar, Irawati;Riswan, Riswan;Supriyanto, Supriyanto;Tarigan, Joel Elpinta;Fatriasari, Widya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.539-550
    • /
    • 2016
  • The objective of this research was to evaluate physical and mechanical properties of three species of Styrax woods from North Tapanuli in Indonesia. The woods were more than 15 years old. Physical properties such as specific gravity, green moisture content, and volume shrinkage were determined by the procedures based on BS-373 standard for small clear specimen. Furthermore, mechanical properties, including modulus of rupture, modulus of elasticity, compression parallel to grain and hardness were also tested according to the standard. Along the stem direction, the edge section had better properties compared with those near the pith section. And the base section had also better properties than upper section. Based on the specific gravity, all of the Styrax woods in this research were classified into III-IV strength classes. A good dimensional stability was demonstrated by the value of the tangential and radial ratio which reached one. With the consideration of the mechanical properties, Styrax woods were suitable use for raw materials of light construction, furniture and handy craft.

Comparison of Ultrasonic Velocities between Direct and Indirect Methods on 30 mm × 30 mm Spruce Lumber

  • OH, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.562-568
    • /
    • 2020
  • This study investigates the relationship between ultrasonic velocity and density in the direct method, the effect of distance between transducers in the indirect method, and the difference between the direct and indirect methods with transducers placed at a distance of 200 mm in nondestructive ultrasonic testing of spruce lumber. The direct method using 54 kHz ultrasonic transducers was applied to two planes, namely, radial section (LR) and tangential section (LT) of samples. The indirect method measurements were taken using the same transducers. Two velocities were measured at the top and bottom of the LT plane and at the two sides of the LR plane; the two values for each plane were averaged. The relationship between density and ultrasound velocity in the direct method demonstrated a positive correlation between the two variables. The difference between the two planes, LT and LR, was not statistically significant. Moreover, the distance between the transducers in the indirect method affected ultrasound velocity, with the ultrasonic velocity increasing as the distance between the transducers became larger. A transducer distance of 200 mm yielded a close approximation of the direct method results with a ratio of 0.87. Finally, no statistical evidence of a difference between the two planes in the indirect method was found. If the direct method, which requires access to two surfaces, is impractical, the indirect method can be applied.

Sound Radiation Analysis for Structural Vibration Noise Control of Tire Under the Action of Random Moving Line Forces (불규칙 이동분포하중을 받는 타이어의 구조 진동 소음 제어를 위한 음향방사 해석)

  • 김병삼;이성철
    • Journal of KSNVE
    • /
    • v.5 no.2
    • /
    • pp.169-181
    • /
    • 1995
  • A theoretical model has been studied to describe the sound radiation analysis for structural vibration noise control of tire under the action of random moving line forces. When a tire is analyzed, it has been modeled as a curved beam with distributed springs and dash-pots which represent the radial, tangential stiffness and damping of tire, respectively. The reaction due to fluid loading on the vibratory response of the curved beam is taken into account. The curved beam is assumed to occupy the plane y = 0 and to be axially infinite. The material of curved beam and elastic foundation are assumed to be lossless, and governed by the law of Bernoulli-Euler beam theory. The expression for sound power is integrated numerically and its results examined as a function of Mach number(M), wavenumber ratio(.gamma.) and stiffness factor(.PSI.). The experimental investigation for structural vibration noise of tire under the action of random moving line forces has been made. Based on the STSF(Spatial Transformation of Sound Field) techniques, the sound power and sound radiation are measured. The experimental results show that operating condition, material properties and design factors of the tire have a great effect on the sound power and sound radiation characteristics.

  • PDF

Characteristics of Flank and Tip Seal Leakage in a Scroll Compressor for Air-Conditioners (공기조화기용 스크롤 압축기의 플랭크 및 팁실 누설특성)

  • Youn, Young;Kim, Yong-Chan;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.134-143
    • /
    • 2001
  • This paper presents the characteristics of flank and tip seal leakage in a scroll compressor for air-conditioners with R-22 under actual operating conditions. It is well known that the leakage has significant effect on the performance of the scroll compressor. Experiments were performed by using indirect method for measuring mass flow rate passing through flank and tip seal under actual operating conditions, In addition, an analytical model for tip seal leakage was developed to investigate tangential and radial leakage observed at grooves and contact points of tip seals. For low oil concentration, theoretical results were compared with experimental data to verify the analytical model. As a result, leakages through flank and tip seal parts were evaluated as afunction of pressure ratio, orbiting angle, discharge pressure, tip clearance, and leakage point. It was also found that the tip seal leakage was considerable even though the tip seal provided adequate sealing effect.

  • PDF

Physical Characteristics of Korean Red Pines According to Provinces (Goseong, Hongcheon and Bonghwa-gun) (한국산 소나무의 지역(고성, 홍천 및 봉화군)에 따른 물리적 특성)

  • Kim, Min-Ji;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.437-448
    • /
    • 2018
  • Physical characteristics of Korean red pine (Pinus densiflora) were investigated with different cultivation locations in Taebaek Mountains as Goseong-gun, Hongcheon-gun and Bonghwa-gun as experimental sites. Moisture content based on air-dried or green (artificial) wood was no significant differences with different cultivation places. Specific gravities of both sapwood and heartwood of red pine from Bonghwa-gun were higher than those from other two sites (Hongcheon-gun or Goseong-gun). Specific gravity of heartwood of red pine from Goseong-gun was higher than it from Hongcheon-gun, but this trend was opposite in case of sapwood. Higher specific gravity of red pine heartwood from Goseong-gun maybe resulted in higher strength than those of other sites. In shrinkage ratio, there was no significant difference among different cultivation places in radial directions, but red pine from Bonghwa-gun was higher than those of other sites in tangential directions. Hygroscopicity was no significant differences with different cultivation places. These results will be helpful information for efficient use of pinewood and good quality of pinewood production for genetical breeding improved.

Performance Characteristics of MicroPET R4 Scanner for Small Animal Imaging (소동물 영상을 위한 MicroPET R4스캐너의 특성평가)

  • Lee, Byeong-Il;Lee, Jae-Sung;Kim, Jin-Su;Lee, Dong-Soo;Choi, Chang-Un;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Purpose: Dedicated animal PET is useful equipment for the study of new PET tracer. recently, microPET R4 was installed in the Korea institute of radiology and medical science. In this study, we measured the characteristics of scanner. Materials and methods: Resolution was measured using a line source (F-18:65 ${\mu}Ci$, inner diameter: 0.5 mm). The line source was put in the axial direction and was moved from the center of field of view to outside with 1 mm interval. PET images were reconstructed using a filtered back-protection and ordered subset expectation maximization. line source (16.5 ${\mu}Ci$, 78 mm) was put on the tenter of axial direction to measure the sensitivity when the deadtime was under 1%. Images were acquired during 4 minutes respectively from center to 39 mm outward. Delayed count was subtracted from total count and then decay was corrected for the calculation of sensitivity. Noise equivalent count ratio and scatter fraction were calculated using cylindrical phantom. Results: Spatial resolution of reconstructed image using filtered back-projection was 1.86 mm(radial), 1.95 mm(tangential), 1.95 mm(axial) in the tenter of field of view, and 2.54 mm, 2.8 mm, 1.61 mm in 2 cm away from the center respectively. Sensitivity was 2.36% at the center of transaxial field of view. Scatter fraction was 20%. Maximal noise equivalent count ratio was 66.4 kcps at 242 kBq/mL. Small animal images were acquired for confirmation of performance. Conclusion: Performance characteristics of microPET R4 were similar with reported value. So this will be a useful tool for small animal imaging.

Micromechanical behavior of unidirectional composites under a transverse shear loading (횡방향 전단하중을 받는 단일방향 복합재료의 미시역학적 거동연구)

  • Choi, Heung-Soap;Achenbach, J.D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1896-1911
    • /
    • 1997
  • Effects of fiber-matrix interphases on the micro-and macro-mechanical behaviors of unidirectionally fiber-reinforced composites subjected to transverse shear loading at remote distance have been studied. The interphases between fibers and matrix have been modeled by the spring-layer which accounts for continuity of tractions, but allows radial and circumferential displacement jumps across the interphase that are linearly related to the normal and tangential tractions. Numerical calculations for basic cells of the composites have been carried out using the boundary element method. For an undamaged composite the micro-level stresses at the matrix side of the interphase and effective shear stiffness have been computed as functions of fiber volume ratio $V_f$ and interphase stiffness k. Results are presented for various interphase stiffnesses from the perfect bonding to the case of total debonding. For a square array composite the results show that for a high interphase stiffness k>10, an increase of $V_f$ increases the effective transverse shear modulus G over bar of the composite. For a relatively low interphase stiffness k<1, it is shwon that an increase of $V_f$ slightly decreases the effective transverse shear modulus. For the perfect bonding case, G over bar for a hexagonal array composite is slightly larger than that for a square array composite. Also for a damaged composite partially debonded at the interphase, local stress fields and effective shear modulus are calculated and a decrease in G over bar has been observed.

Characteristics of the Radio-Frequency/Vacuum Drying of Heavy Timbers for Post and Beam of Korean Style Housings Part II : For Korean red pine heavy timbers with 250 × 250 mm, 300 × 300 mm in cross section and 300 mm in diameter, and 3,600 mm in length

  • Lee, Nam-Ho;Zhao, Xue-Feng;Shin, Ik-Hyun;Park, Moon-Jae;Park, Jung-Hwan;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • This study examined the characteristics of radio-frequency/vacuum dried Korean red pine ($Pinus$ $densoflora$) heavy timbers with 250 ${\times}$ 250 mm (S), 300 ${\times}$ 300 mm (L) in cross section and 300 mm in diameter, and 3,600 mm in length, which were subjected to compressive loading after a kerf pretreatment. The following results were obtained : The drying time was short and the drying rate was high in spite of the large cross section of specimens. The moisture gradient inall specimens was gentle in both longitudinal and transverse directions owing to dielectric heating. The shrinkage of the width in the direction perpendicular to was 21 percent ~ 76 percent of that of the thickness of square timbers in the direction parallel to the mechanical pressure. The casehardening for all specimens was very slight because of significantly reduced ratio of the tangential to radial shrinkage of specimens and kerfing. The surface checks somewhat severely occurred although the occurrence extent of the surface checks on the kerfed specimens was slight compared withthat on the control specimen.