• Title/Summary/Keyword: tangent

Search Result 802, Processing Time 0.036 seconds

Application of return mapping technique to multiple hardening concrete model

  • Lam, S.S. Eddie;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2000
  • Computational procedure within the framework of return mapping technique has been presented to integrate the constitutive behavior of a concrete model. Developed by Ohtani and Chen, this concrete model is based on multiple hardening concept, and is rate-independent and associative. Consistent tangent operator suitable for finite element analysis is derived to preserve the rate of convergence. Accuracy of the integration technique is verified and compared with available experimental data. Computational efficiency is demonstrated by comparing with results based on elasto-plastic tangent.

COMPLETE LIFTS OF PROJECTABLE LINEAR CONNECTION TO SEMI-TANGENT BUNDLE

  • Polat, Murat;Yildirim, Furkan
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.483-501
    • /
    • 2021
  • We study the complete lifts of projectable linear connection for semi-tangent bundle. The aim of this study is to establish relations between these and complete lift already known. In addition, the relations between infinitesimal linear transformations and projectable linear connections are studied. We also have a new example for good square in this work.

IDENTITIES INVOLVING q-ANALOGUE OF MODIFIED TANGENT POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.643-654
    • /
    • 2021
  • In this paper, we define a modified q-poly-Bernoulli polynomials of the first type and modified q-poly-tangent polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

STRICTLY INFINITESIMALLY GENERATED TOTALLY POSITIVE MATRICES

  • Chon, In-Heung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.443-456
    • /
    • 2005
  • Let G be a Lie group, let L(G) be its Lie algebra, and let exp : $L(G){\rightarrow}G$ denote the exponential mapping. For $S{\subseteq}G$, we define the tangent set of S by $L(S)\;=\;\{X\;{\in}\;L(G)\;:\;exp(tX)\;\in\;S\;for\;all\;t\;{\geq}\;0\}$. We say that a semigroup S is strictly infinitesimally generated if S is the same as the semigroup generated by exp(L(S)). We find a tangent set of the semigroup of all non-singular totally positive matrices and show that the semigroup is strictly infinitesimally generated by the tangent set of the semigroup. This generalizes the familiar relationships between connected Lie subgroups of G and their Lie algebras

Constructing $G^1$ Quadratic B$\acute{e}$zier Curves with Arbitrary Endpoint Tangent Vectors

  • Gu, He-Jin;Yong, Jun-Hai;Paul, Jean-Claude;Cheng, Fuhua (Frank)
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Quadratic B$\acute{e}$zier curves are important geometric entities in many applications. However, it was often ignored by the literature the fact that a single segment of a quadratic B$\acute{e}$zier curve may fail to fit arbitrary endpoint unit tangent vectors. The purpose of this paper is to provide a solution to this problem, i.e., constructing $G^1$ quadratic B$\acute{e}$zier curves satisfying given endpoint (positions and arbitrary unit tangent vectors) conditions. Examples are given to illustrate the new solution and to perform comparison between the $G^1$ quadratic B$\acute{e}$zier cures and other curve schemes such as the composite geometric Hermite curves and the biarcs.

A Tetrahedral Decomposition Method for Computing Tangent Curves of 3D Vector Fields (3차원 벡터필드 탄젠트 곡선 계산을 위한 사면체 분해 방법)

  • Jung, Il-Hong
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.575-581
    • /
    • 2015
  • This paper presents the development of certain highly efficient and accurate method for computing tangent curves for three-dimensional vector fields. Unlike conventional methods, such as Runge-Kutta method, for computing tangent curves which produce only approximations, the method developed herein produces exact values on the tangent curves based upon piecewise linear variation over a tetrahedral domain in 3D. This new method assumes that the vector field is piecewise linearly defined over a tetrahedron in 3D domain. It is also required to decompose the hexahedral cell into five or six tetrahedral cells for three-dimensional vector fields. The critical points can be easily found by solving a simple linear system for each tetrahedron. This method is to find exit points by producing a sequence of points on the curve with the computation of each subsequent point based on the previous. Because points on the tangent curves are calculated by the explicit solution for each tetrahedron, this new method provides correct topology in visualizing 3D vector fields.

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment (크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석)

  • Seo, Jun Min;Lee, Han Sang;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.703-709
    • /
    • 2017
  • Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

A STUDY ON THE FACIAL ESTHETIC PREFERENCES AMONG KOREAN YOUTHS: ASSESSMENT OF PROFILE PREFERENCES (한국 젊은이의 안면미 선호경향에 관한 연구 : 얼굴의 측모평가를 중심으로)

  • Song, Sejin;Choi, Ik-chan
    • The korean journal of orthodontics
    • /
    • v.22 no.4 s.39
    • /
    • pp.881-920
    • /
    • 1992
  • This study was designed to assess profile preferences among Korean youths in the year 1992. Facial esthetics was evaluated by means of silhouette profiles, eliminating the influence of a number of aspects that may affect judgment when normal lateral photographs are used. The main points of preference to be clarified here are as follows. First, on facial convexity, Second, on nasion depth, Third, on mentolabial sulcus depth, Fourth, on the position of upper and lower lips, Fifth, on facial type according to Angle's classification of malocclusion, Sixth, on Song's tangents. The 54 subjects printed in questionnaire as black and white silhouettes were selected from 300 tracings from cephalometric radiographs of people whose age ranging from 11 to 20 years. Photographs of six female subjects were retouched by computer graphic software and printed in color and black/white photographs which were used for adaptation of eyes of participants in selecting profiles in silhouette. They constitute 2 questions. The 54 subjects were grouped as 22 questions, each of them composed of 6 subjects, according to the aspects to be clarified. Twenty four questions in total were asked to assess profile preferences. For the assessment, the profile line, the facial esthetic triangle, Song's tangents, and Angle's classification of malocclusion were introduced. The profile line is composed of 11 component points which are Trichion, Glabella, Nasion, Pronasale, Subnasale, Labrale superius, Stomion, Labrale inferius, Supramentale, Pogonion, and Gnathion. The facial esthetic triangle is composed of 3 tangents: A-tangent which is the tangent of dorsum of nose, B-tangent which is the line passing through Sn and Ls, and C-tangent which is drawn on the turning point of the curve which lies between mentolabial sulcus (Sm) and pogonion (Pg). Angle's classification has 3 types of malocclusion which are Class I, Class II, and Class III. Class II malocclusion is subdivided into Division 1 and Division 2. The participants of the survey were composed of 861 college students (448 male students, 413 female students) whose majors grouped as Fine Arts. Liberal Arts, and Natural Sciences, and whose mean age 21.8 years. The statistics program SPSS/PC + of SPSS Inc. was used to analyze answers of participants. Crosstabulation, Chi-square test, and Kendall test were done. The conclusions are as follows: First, Korean youths have a tendency to prefer the slightly convex face to the flat or concave face. Second, they prefer a moderately deep nasion. Third, they prefer a moderately deep mentolabial sulcus. Fourth, they prefer the position of lips which are near to Ricketts' E-line. The position of the upper lip which is slightly posterior to E-line is preferred. The upper lip which lies too far anterior or posterior to the lower lip is not perferred. Fifth, they prefer most, according to Angle's Classification of Malocclusion, Class I facial profile which has a slight inclination to Class II division 2. The order of preference is Class I, Class II division 2, Class III, and Class II division 1. Sixth, they prefer the type 2 and 3 of Song's tangents. The facial profile within which A-and B-tangent meet is preferred. The facial profile which has Cotangent that .meets with A-tangent slightly posterior to the crossing point of A-and B-tangent or that parallels with B-tangent is preferred.

  • PDF

A Study on Evaluating Length Limit in Tangent Section of Highway Based on Driver's Workload (운전자 작업부하를 고려한 최장 허용 직선길이 결정에 관한 연구)

  • 정봉조;강정규;김주영;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • Driver's psychophysiological load is one of the key measures for evaluating the safety of the highway. The purpose of this study is to propose and to test the methodology of evaluating the length limit of tangent section using driver's psychophysiological load. Driver's psychophysiological data is represented by the data acquire by frontal and occipital lobe. In order to compare the differences between tangent segments and the orders, real road driving experiments were performed. We collected psychophysiological data during the operation of vehicles. The experimental data were analyzed using FFT (Fast Fourier Transform) and relative power spectrum tools. These routine produces the beta value which is a major factor in consideration of driver's condition. The results in this study are summarized as follows: (1) A new methodology of evaluating the length limit in tangent section of highway using driver's psychophysiological load was proposed. (2) It was observed that driver's work load at tangent section was three times lower than that at the other section types. The beta value at tangent section is 2.219, while that at general section is 0.821. (3) It was observed that the driver's work load was significantly dropped to 0.428 after the continuous driving of 4.2km tangent section. (4) Based on the experimental subjects(from 27 Years to 31). we suggest that 30 times of design speed(3.0 km) could be acceptable as the length limit of tangent section in highway rather than the Previous limit which is 20 times of design speed(2.0km).