• Title/Summary/Keyword: tactile interface

Search Result 66, Processing Time 0.024 seconds

A Study on Gel-free Probe for Detecting EEG (뇌파 탐지용 Gel-free probe 연구)

  • Yun, Dae-Jhoong;Eum, Nyeon-Sik;Jeong, Myung-Yung
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.156-166
    • /
    • 2012
  • Over the past 15 years productive BCI research programs have arisen. Current mainstream EEG electrode setups permit efficient recordings but most of electrodes has the disadventages of need for skin preparation and gel application to correctly record signals. The new gel-free probe was adapted for EEG recording and it can be fixed to the scalp with the micro needle without neuro-gel. It use standard EEG cap for wearing electrodes on scalp so it is compatible with standard EEG electrodes. A comparison between electrode characteristics is achieved by performing simultaneous recordings with the gel electrodes and gel-free probe placed in parallel scalp positions on the same anatomical regions. The quality of EEG recordings for all two types of experimental conditions is similar for gel-electrodes and gel-free probe. Subjects also reported not having special tactile sensations associated with wearing of gel-free probes. According to our results, it is expected that gel-free probe can be adapted to BCI, BMI(Brain Machine Interface), HMI(Human Machine Interface) because of its simple application and comfortable wearing process.

SmartPuck System : Tangible Interface for Physical Manipulation of Digital Information (스마트 퍽 시스템 : 디지털 정보의 물리적인 조작을 제공하는 실감 인터페이스 기술)

  • Kim, Lae-Hyun;Cho, Hyun-Chul;Park, Se-Hyung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.4
    • /
    • pp.226-230
    • /
    • 2007
  • In the conventional desktop PC environment, keyboard and mouse are used to process the user input and monitor displays the visual information as an output device. In order to manipulate the digital information, we move the virtual cursor to select the desired graphical icon on the monitor The cursor represents the relative motion of the physical mouse on the desk. This desktop metaphor does not provide intuitive interface through human sensation. In this paper, we introduce a novel tangible interface which allows the user to interact with computers using a physical tool called "Smartpuck". SmartPuck system bridges the gap between analog perception and response in human being and digital information on the computer. The system consists of table display based on a PDP, SmartPuck equipped with rotational part and button for the user's intuitive and tactile input, and a sensing system to track the position of SmartPuck. Finally, we will show examples working with the system.

Design Process Suggestion of Vibrotactile Interface applying Haptic Perception Factor Analysis (햅틱 인지 요인 분석을 적용한 진동 촉감 인터페이스 설계 프로세스 제안)

  • Heo, Yong-Hae;Kim, Seung-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2021
  • This study suggests a design process for vibrotactile interface that can apply haptic perception factors reflecting human tactile mechanisms. This process consists of 4 stages: the haptic sense requirement analysis stage, the haptic element analysis stage, the haptic perception factor analysis stage, the haptic requirement detailed design, and the prototype implementation stage. The advantage of this design process is that unnecessary tasks can be excluded in deriving and implementing user requirements, by applying haptic perception factor analysis, and the biggest feature is that research results on ergonomic mechanisms can be reflected in the haptic design, completes prototype development simultaneously while determining the haptic requirements statement by performing user evaluation, usability testing, and haptic feature optimization tasks simultaneously. This design process includes all stages from user requirements to haptic function detailed design and prototype implementation, so it is expected that general developers who lack expertise in haptic will also be able to design user-centered designs, enabling design and implementation of haptic functions at a certain level.

A Haptic Rendering Technique for 3D Objects with Vector Field (벡터 필드를 가진 3차원 오브젝트의 햅틱 렌더링 기법)

  • Kim, Lae-Hyun;Park, Se-Hyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.216-222
    • /
    • 2006
  • Vector field has been commonly used to visualize the data set which is invisible or is hard to explain. For instance, it could be used to visualize scientific data such as the direction and amount of wind and water field, transfer of heat through thermally conductive materials, and electromagnetic field. In this paper, we present a technique to enable intuitive recognition of the data though haptic feedback along with visual feedback. To add tactile information to graphical vector field, we model a haptic vector field and then apply it to the haptic map to guide a user to destination and haptic simulation of water field on 2D images whish can be used ill everyday life. These systems allow one to recognize vector information intuitively through haptic interface. We expect that the haptic rendering technique of vector field can be applied to various applications such as education, training, and entertainment.

Development of the Balance Chair for Improving Postural Control Ability & Pelvic Correction (골반교정 및 자세균형능력 증진을 위한 균형의자 개발)

  • Oh, Seung-Yong;Shin, Sun-Hye;Kang, Seung-Rok;Hong, Chul-Un;Kwon, Tae-Kyu
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.271-277
    • /
    • 2017
  • The purpose of this study was to develop a balance chair for improving pelvic correction and postural balance through postural balance training using tactile feedback by a vibration motor provided in real time according to the user's attitude. We built a body frame using mono cast(MC) Nylon, Touch thin film transistor(TFT) for user interface, a main control module using Arduino, a 9-axis acceleration sensor for user's posture determination, and a vibration module for tactile feedback. The prototype of the Balance Chair which surrounds the outside was made with cushion for sitting conformability. In order to verify the effectiveness of the postural balance training system using the built prototype, the muscle activity (% MVIC) of the left and right iliocostalis lumborum those are the main muscles of the spinal movement was measured with ten female subjects. And the balance ability before and after training was measured using Spine Balance 3D, a posture balance ability evaluation device. The muscular activities of the left and right iliocostalis lumborum showed the balance activation according to vibration feedback during exercise protocol and postural balance improved after balance exercise training using balance chair. This study could be apply to use the fundamental research for developing the various postural balance product.

Methodologies for Enhancing Immersiveness in AR-based Product Design (증강현실 기반 제품 디자인의 몰입감 향상 기법)

  • Ha, Tae-Jin;Kim, Yeong-Mi;Ryu, Je-Ha;Woo, Woon-Tack
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.2 s.314
    • /
    • pp.37-46
    • /
    • 2007
  • In this paper, we propose technologies for enhancing the immersive realization of virtual objects in AR-based product design. Generally, multimodal senses such as visual/auditory/tactile feedback are well known as a method for enhancing the immersion in case of interaction with virtual objects. By adapting tangible objects we can provide touch sensation to users. A 3D model of the same scale overlays the whole area of the tangible object so the marker area is invisible. This contributes to enhancing immersion. Also, the hand occlusion problem when the virtual objects overlay the user's hands is partially solved, providing more immersive and natural images to users. Finally, multimodal feedback also creates better immersion. In our work, both vibrotactile feedback through page motors, pneumatic tactile feedback, and sound feedback are considered. In our scenario, a game-phone model is selected, by way of proposed augmented vibrotactile feedback, hands occlusion-reduced visual effects and sound feedback are provided to users. These proposed methodologies will contribute to a better immersive realization of the conventional AR system.

Vibrotactile Space Mouse (진동촉각 공간 마우스)

  • Park, Jun-Hyung;Choi, Ye-Rim;Lee, Kwang-Hyung;Back, Jong-Won;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.337-341
    • /
    • 2008
  • This paper presents a vibrotactile space mouse which use pin-type vibrotactile display modules and a gyroscope chip. This mouse is a new interface device which is not only an input device as an ordinary space mouse but also a tactile output device. It consists of a space mouse which use gyroscope chip and vibrotactile display modules which have been developed in our own laboratory. Lately, by development of vibrotactile display modules which have small size and consume low power, vibrotactile displays are available in small sized embedded systems such as wireless mouses or mobile devices. Also, development of new sensors like miniature size gyroscope by MEMS technology enables manufacturing of a small space mouse which can be used in the air not in a plane. The vibrotactile space mouse proposed in this paper recognizes motion of a hand using the gyroscope chip and transmits the data to PC through Bluetooth. PC application receives the data and moves pointer. Also, 2 by 3 arrays of pin-type vibrotactile actuators are mounted on the front side of the mouse where fingers of a user's hand contact, and those actuators could be used to represent various information such as gray-scale of an image or Braille patterns for visually impared persons.

  • PDF

Design and Implementation of a Real-time Education Assistive Technology System Based on Haptic Display to Improve Education Environment of Total Blindness People (전맹 시각장애인의 교육환경을 개선시키기 위한 햅틱 디스플레이 기반의 실시간 교육보조공학 시스템의 설계 및 구현)

  • Jung, Jung-Il;Kim, Heung-Gi;Cho, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.94-102
    • /
    • 2011
  • In this paper, we proposed a real-time education assistive technology system based on haptic display to improve education environment of total blindness people. The proposed system consist of a lecture and writing S/W for educator and a previously developed haptic display H/W for total blindness people. The one has the major function which is quickly and easily writing to the education data, that will be provided to total blindness people, through familiar UI, the other has the major function which print out the tactile information about the education data. The result of implementing system not only provides a similar result using existing braille instrument and printer, but shows that it is effective performance and functionality because it can print out the education data in real time.

A Study on the Tactile Inspection Planning for OMM based on Turning STEP-NC information (ISO14649) (Turning STEP-NC(ISO14649) 정보를 기반한 접촉식 OMM(On-Machine Measurement) Inspection planning에 대한 연구)

  • IM CHOONG-IL
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.208-216
    • /
    • 2003
  • ISO 14649 (data model for STEP-NC) is a new interface scheme or language for CAD-CAM-CNC chain under established by ISO TC184 SCI. Up to this point, the new language is mainly made for milling and turning, and other processes such as EDM will be completed in the future. Upon completion, it will be used as the international standard language for e-manufacturing paradigm by replacing the old machine-level language, so called M&G code used since 1950's. With the rich information contents included in the new language, various intelligent functions can be made by the CNC as the CNC knows what-to-make and how-to-make. In particular, On-Machine Inspection required for quality assurance in the machine level, can be done based on the information of feature­based tolerance graph. Previously, On-Machine inspection has been investigated mainly for milling operation, and only a few researches were made for turning operation without addressing the data model. In this thesis, we present a feature-based on-machine inspection process by the 4 Tasks: 1) proposing a new schema for STEP-NC data model, 2) converting the conventional tolerance scheme into that of STEP-NC, 3) modifying the tolerance graph such that the tolerance can be effectively measured by the touch probe on the machine, and 4) generating collision-free tool path for actual measurement. Task 1 is required for the incorporation of the presented method in the ISO 14649, whose current version does not much include the detailed schema for tolerance. Based on the presented schema, the tolerance represented in the conventional drafting can be changed to that of STEP-NC (Task 2). A special emphasis was given to Task 3 to make the represented tolerance accurately measurable by the touch probe on the machine even if the part setup is changed. Finally, Task 4 is converting the result of Task into the motion of touch probe. The developed schema and algorithms were illustrated by several examples including that of ISO 14649 Part 12.

  • PDF

Walking Aid System for Visually Impaired People by Exploiting Touch-based Interface (촉각 인터페이스를 이용한 시각장애인 보행보조 시스템)

  • Lee, Ji-eun;Oh, Yoosoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.522-525
    • /
    • 2015
  • In this paper, we propose a walking aid system that guides route to visually impaired people in order to recognize uncertain obstacles based on tactile stimulation. The proposed system is composed of the touch-based obstacle detection module, the obstacle height detection module, and the route guidance algorithms. The touch-based obstacle detection module detects each obstacle, which is located at left, right, and front of a visually impaired person by stimulating his thumb with the rotational force of the servomotor. The obstacle height detection module integrates detected data by the linear arrangement of ultrasonic sensors to identify the height of an obstacle about 3 of-phase(i.e., high, medium, low). The proposed route guidance algorithm guides an optimized path to the visually impaired person by updating his current position information based on the signal of the built-in GPS receiver in smartphone. In addition, the route guidance algorithm delivers information with speech to a visually impaired person through Bluetooth commuination in the developed route guidance app. The proposed system can create a path to avoid the obstacles by recognizing the placed situation of the obstacles with exploring the uncertain path.

  • PDF