DOI QR코드

DOI QR Code

A Study on Gel-free Probe for Detecting EEG

뇌파 탐지용 Gel-free probe 연구

  • 윤대중 (부산대학교 인지메카트로닉스공학과) ;
  • 엄년식 ((주)유바이오매드) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2011.12.20
  • Accepted : 2011.03.12
  • Published : 2012.03.31

Abstract

Over the past 15 years productive BCI research programs have arisen. Current mainstream EEG electrode setups permit efficient recordings but most of electrodes has the disadventages of need for skin preparation and gel application to correctly record signals. The new gel-free probe was adapted for EEG recording and it can be fixed to the scalp with the micro needle without neuro-gel. It use standard EEG cap for wearing electrodes on scalp so it is compatible with standard EEG electrodes. A comparison between electrode characteristics is achieved by performing simultaneous recordings with the gel electrodes and gel-free probe placed in parallel scalp positions on the same anatomical regions. The quality of EEG recordings for all two types of experimental conditions is similar for gel-electrodes and gel-free probe. Subjects also reported not having special tactile sensations associated with wearing of gel-free probes. According to our results, it is expected that gel-free probe can be adapted to BCI, BMI(Brain Machine Interface), HMI(Human Machine Interface) because of its simple application and comfortable wearing process.

Keywords

References

  1. John G. Webster, 의용계측공학, 여문각, 서울, pp. 212- 213, 2002.
  2. C.Foneseca, J.P. Silva Cunha, R, E. Martins, V. M. Ferreira, J. P. Marques de Sa, M.A. Barbosa, and A. Martins Silva, "A novel dry active electrode for EEG recording", The IEEE Trans. on Biomed. Eng., vol. 8, no. 1, pp. 571-572, 1979.
  3. A. Potter and L. Menke, "Capacitive type of biomedical electrode", IEEE Trans. Biomed. Eng., vol. 17, pp. 350-351 1970. https://doi.org/10.1109/TBME.1970.4502765
  4. A. Searle and L. Kirkup, "A direct comparison of wet, dry and insulating bioelectric recording electrodes", Physiol. Meas. vol. 22, pp. 71-83, 2000.
  5. Ary JP, Klein SA, and Fender DH. "Location of sources of evoked scalp potentials: corrections for skull and scalp thicknesses", IEEE Trans Biomed Eng, vol. 128, pp. 447-452, 1981.
  6. Birbaumer N. "Breaking the silence. Brain?computer interfaces(BCI) for communication and motor control", Psychophysiology vol. 43, pp. 517-532, 2006. https://doi.org/10.1111/j.1469-8986.2006.00456.x
  7. C. F., and R. E. Whalen, "Current density and electrically induced ventricular fibrillation", Med. Instrum. Tech., vol. 24, pp. 207-211, 1990.
  8. Curio G. "High frequency(600 Hz) bursts of spikelike activities generated in the human cerebral somatosensory system", Electroencephalogr Clin Neurophysiol Suppl, vol. 49, pp. 56?61, 1999.
  9. Ch. Gondran, E. Siebert, P. Fabry, E. Novakov, and P. Y. Gumery, "Non-polarisable dry electrode based on NASICON ceramic", Med. & Biol. Eng. & Comput., vol. 33, pp. 452-457, 1995. https://doi.org/10.1007/BF02510529
  10. C. Fonseca, F. Vaz, and M.A. Barbosa, "Electrochemical behaviour of titanium coated stainless steel by R.F. sputtering in synthetic sweat solutions for electrode applications", accepted for publication in Corrosion Science.
  11. Dalziel and C. F., "Electric shock", in Advances in Biomedical Engineering, New York: Academic, vol. 3, pp. 223-248, 1973.
  12. R J Cooper et al, "Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation", Phys. Med. Biol. vol. 54, p. 2093, 2009. https://doi.org/10.1088/0031-9155/54/7/016
  13. Ferree TC, Luu P, Russell GS, and Tucker DM. "Scalp electrode impedance, infection risk, and EEG data quality", Clin Neurophysiol, vol. 112, pp. 536-544, 2001. https://doi.org/10.1016/S1388-2457(00)00533-2
  14. Fonseca. C, Cunha. J.P.S, Martins. R.E, Ferreira. V.M, de Sa. J.P.M, Barbosa. M.A, and da Silva. A.M, "A novel dry active electrode for EEG recording", Biomedical Engineering, IEEE Transactions on, vol. 54, no. 1, pp. 162-165, 2007. https://doi.org/10.1109/TBME.2006.884649
  15. F. Popescu, S. Fazli, Y. Badower, B. Blankertz, and K.-R. Muller, "Single trial classification of motor imagination using 6 dry EEG electrodes", PLoS ONE, vol. 2, p. e637, 2007. https://doi.org/10.1371/journal.pone.0000637
  16. Lantz, R Grave de Peralta, L Spinelli, M Seeck, and C.M Michel, "Epileptic source localization with high density EEG: how many electrodes are needed? ", Clinical Neurophysiology, vol. 114, Issue 1, pp. 63-69, 2003. https://doi.org/10.1016/S1388-2457(02)00337-1
  17. Geddes, L. A., Bourland, J. D., Wise, G. and Steinberg, R. "Dry electrodes and holder for electrooculography", Medical and Biological Engineering. In Press 1973.
  18. Hak W. Tam and John G. Webster, "Minimizing electrode motion artifact by skin abrasion", IEEE Transactions on Biomedical Engineering, vol. BME24, no. 2, pp. 134-139, 1997.
  19. Inui K. Tran TD. Hoshiyama M. and Kakiqi R., "Preferential stimulation of Ad fibers by intraepidermal needle electrode in humans", Pain, vol. 96, no. 3, pp. 247-252, 2002. https://doi.org/10.1016/S0304-3959(01)00453-5
  20. Kim, S. et al. "Integrated wireless neural interface based on the Utah electrode array", Biomed. Microdevices, vol. 11, p. 453466, 2009. https://doi.org/10.1007/s10544-008-9251-y
  21. L. A. Geddes and M. E. Valentinuzzi. "Temporal changes in electrode impedance while recording the electrocardiogram with "Dry" electrodes", Annals of Biomedical Engineering 1, pp. 356-367, 1973. https://doi.org/10.1007/BF02407675
  22. Lantz G, Grave de Peralta R, Gonzalez S, and Michel CM. "Noninvasive localization of electromagnetic epileptic activity", 2. Demonstration of 68 G. Lantz et al., Clinical Neurophysiology, vol. 114, pp. 63-69, 2003, sublobar accuracy in patients with simultaneous surface and depth recordings. Brain Topogr, vol. 14, pp. 139-147, 2001. https://doi.org/10.1023/A:1012996930489
  23. M. Matteucci et al. Microdelectronic Engineering 84 pp. 1737-1740, 2007. https://doi.org/10.1016/j.mee.2007.01.243
  24. Shibasaki H and Hallett M. "What is the Bereitschaftspotential?", Clin Neurophysiol, vol. 117, pp. 2341-56, 2006. https://doi.org/10.1016/j.clinph.2006.04.025
  25. Shulan Hsieh. "The lateralized readiness potential and P300 of stimulus-set switching", International Journal of Psychophysiology, vol. 60, pp. 284-291, 2006. https://doi.org/10.1016/j.ijpsycho.2005.07.011
  26. Srinivasan R, Nunez PL, Tucker DM, Silberstein RB, and Cadusch PJ. "Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials", Brain Topogr, vol. 8, pp. 355-366, 1996. https://doi.org/10.1007/BF01186911
  27. S. Chin, C. Lee, and J. Lee, "Facial expression image mapping for brain computer interface using EI type classification", International Conference on Information and Sciences and Interation Sciences, June, 2010.
  28. Taheri BA, Knight RT, and Smith RL. "A dry electrode for EEG recording", Electroencephysiol. vol. 90(5), pp. 376-383, 1994.
  29. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, and Vaughan TM. "Brain-computer interfaces for communication and control", Clin Neurophysiol vol. 113, pp.767-791, 2002.
  30. Zablow, L. and Goldensohn, "E. S. A comparison between scalp and needle electrodes for the EEG. Electroenceph", Clin. Neurophysiol., vol. 26, pp. 530-533, 1969. https://doi.org/10.1016/0013-4694(69)90131-X