• 제목/요약/키워드: tRNA-derived species

검색결과 16건 처리시간 0.022초

미선나무 미성숙 종자의 항산화 및 미백 활성 (Antioxidative Activities and Whitening Effects of Ethyl Acetate Fractions from The Immature Seeds of Abeliophyllum distichum)

  • 장태원;박재호
    • 생명과학회지
    • /
    • 제27권5호
    • /
    • pp.536-544
    • /
    • 2017
  • 미선나무 미성숙 종자는 물푸레나무과의 관목으로 전세계적으로 1속 1종의 중요한 식물자원이다. 대한민국에서는 미선나무 자생지를 보존하고 멸종위기식물로 보호하고 있다. 이러한 이유로 미선나무 미성숙 종자에 대한 연구는 미비하다. 본 연구에서 미선나무 미성숙 종자의 항산화 활성과 미백 관련 단백질인 tyrosinase, TRP-1, TRP-2, MITF의 단백질 발현 및 mRNA 수준의 발현 억제 활성을 확인하였다. 미선나무 미성숙 종자는 활성산소종에 효과가 뛰어났으며, 활성산소종은 노화, 염증, 암 등 다양한 질병을 야기시킨다. 항산화 활성은 DPPH, ABTS 라디칼 소거활성 및 환원력을 평가하였으며, 이러한 활성은 페놀류 화합물과 관계가 있는 것으로 알려져 있다. 페놀류 화합물은 천연 폴리페놀이라고 불리는 파이토케미칼로서 다양한 환경적 요인에 의한 식물 방어 기작의 일환으로 생성되는 2차 대사산물이다. 페놀류 화합물은 노화, 항암을 포함한 많은 인간의 건강에 긍정적인 영향을 준다고 알려져 있다. 미선나무 미성숙 종자는 tyrosinase, TRP-1, TRP-2 단백질 및 mRNA를 조절하였으며, 이러한 요인은 멜라닌 생합성에 중요한 역할을 한다. 또한 microphthalmia-associated transcription factor (MITF)의 단백질 및 mRNA를 억제하였다. MITF는 Tyrosinase, TRP-1, TRP-2의 발현과 전사에 연관된 인자로 알려져 있다. 미선나무 미성숙 종자의 미백활성, 페놀류 화합물, 항산화 활성 사이의 연관관계를 확인하였으며, 결론적으로 미선나무 미성숙 종자는 천연 식물 자원으로부터 얻을 수 있는 항산화제 및 피부 미백을 위한 기능성 화장품 원료로 사용될 수 있다.

Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy

  • Choi, Wooram;Kim, Hyun Soo;Park, Sang Hee;Kim, Donghyun;Hong, Yong Deog;Kim, Ji Hye;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제46권4호
    • /
    • pp.536-542
    • /
    • 2022
  • Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 ㎍/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 ㎍/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

Differential Action of trans-10, cis-12 Conjugated Linoleic Acid on Adipocyte Differentiation of Ovine and 3T3-L1 Preadipocytes

  • Iga, T.;Satoh, T.;Yamamoto, S.;Fukui, K.;Song, S.H.;Choi, K.C.;Roh, S.G.;Sasaki, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권11호
    • /
    • pp.1566-1573
    • /
    • 2009
  • Trans-10, cis-12 conjugated linoleic acid (CLA) has been reported to inhibit the adipocyte differentiation of preadipocytes in non-ruminant animals (mice, rat, and human). However, the effects of trans-10, cis-12 CLA have not been clear in ruminants. The objective of this study was to investigate the effects of trans-10, cis-12 CLA on adipocyte differentiation of ovine preadipocytes. Differentiation of these preadipocytes was facilitated by treatment with trans-10, cis-12 CLA. Trans-10, cis-12 CLA increased the number and size of oil red O-stainable lipid drops as well as the levels of GPDH activity. PPAR-$\gamma{2}$ and adipophilin mRNA, adipogenic marker genes, were increased by treatment with trans-10, cis-12 CLA. This result was different from that observed with 3T3-L1 preadipocytes, a clonal cell line derived from rodents. Furthermore, trans-10, cis-12 CLA alone induced the adipocyte differentiation of ovine preadipocytes in differentiation-induction medium without troglitazone. These results suggest that CLA is an inducer and regulator in adipocyte differentiation of ovine preadipocytes, with species differences between ovine and rodent preadipocytes.

Effects of dietary Antrodia cinnamomea fermented product supplementation on metabolism pathways of antioxidant, inflammatory, and lipid metabolism pathways-a potential crosstalk

  • Lee, M.T.;Lin, W.C.;Lin, L.J.;Wang, S.Y.;Chang, S.C.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권7호
    • /
    • pp.1167-1179
    • /
    • 2020
  • Objective: This study was conducted to fathom the underlying mechanisms of nutrition intervention and redox sensitive transcription factors regulated by Antrodia cinnamomea fermented product (FAC) dietary supplementation in broiler chickens. Methods: Four hundreds d-old broilers (41±0.5 g/bird) assigned to 5 groups were examined after consuming control diet, or control diet replaced with 5% wheat bran (WB), 10% WB, 5% FAC, and 10% FAC. Liver mRNA expression of antioxidant, inflammatory and lipid metabolism pathways were analyzed. Prostaglandin E2 (PGE2) concentration in each group were tested in the chicken peripheral blood mononuclear cells (cPBMCs) of 35-d old broilers to represent the stress level of the chickens. Furthermore, these cells were stimulated with 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) and lipopolysaccharide (LPS) to evaluate the cell stress tolerance by measuring cell viability and oxidative species. Results: Heme oxygenase-1, glutathione S-transferase, glutamate-cysteine ligase, catalytic subunit, and superoxide dismutase, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) that regulates the above antioxidant genes were all up-regulated significantly in FAC groups. Reactive oxygen species modulator protein 1 and NADPH oxygenase 1 were both rather down-regulated in 10% FAC group as comparison with two WB groups. Despite expressing higher level than control group, birds receiving diet containing FAC had significantly lower expression level in nuclear factor-kappa B (NF-κB) and other genes (inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-1β, nucleotide-binding domain, leucine-richcontaining family, pyrin domain-containing-3, and cyclooxygenase 2) involving in inflammatory pathways. Additionally, except for 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase that showed relatively higher in both groups, the WB, lipoprotein lipase, Acetyl-CoA carboxylase, fatty acid synthase, fatty acid binding protein, fatty acid desaturase 2 and peroxisome proliferator-activated receptor alpha genes were expressed at higher levels in 10% FAC group. In support of above results, promoted Nrf2 and inhibited NF-κB nuclear translocation in chicken liver were found in FAC containing groups. H2O2 and NO levels induced by LPS and AAPH in cPBMCs were compromised in FAC containing diet. In 35-d-old birds, PGE2 production in cPBMCs was also suppressed by the FAC diet. Conclusion: FAC may promote Nrf2 antioxidant pathway and positively regulate lipid metabolism, both are potential inhibitor of NF-κB inflammatory pathway.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • 제56권2호
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

  • Kim, Si Won;Lee, Jeong Hyo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권8호
    • /
    • pp.1183-1189
    • /
    • 2017
  • Objective: Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods: Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2) gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7) cells during muscle differentiation. Results: Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO) QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion: We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth.