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ABSTRACT

Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix
(ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases
(MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities,
including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and auto-
phagy regulation have not been elucidated.
Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in
the presence of H,0,, and the keratinocyte cells were treated with SYR (0—200 pg/mL). mRNA and
protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively.
Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis-
3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and
confocal microscopy.
Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H,0,-
treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and
ABTS radical scavenging activities with an ECsq value of 10.77 and 10.35 pg/mL, respectively. SYR elevated
total levels of endogenous and exogenous LC3B in H,0;-stimulated HaCaT cells. 3-Methyladenine (3-
MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression.
Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in HO,-stimulated
HacCarT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results
suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.
© 2022 The Korean Society of Ginseng. Publishing services by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Abbreviations: ROS, reactive oxygen species; PCR, polymerase chain reaction;
ECM, extracellular matrix; MMP, matrix metalloproteinase; SYR, Syringaresinol;
DPPH, 2,2 diphenyl-1-picrylhydrazyl; ABTS, 2,2’-azino-bis-3-ethylbenzothiazoline-
6-sulfonic acid; 3-MA, 3-Methyladenine; UV, ultraviolet; CMA, chaperone-medi-
ated autophagy; FoxO3a, Forkhead box 03; MAPK, mitogen-activated protein ki-
nase; DMEM, Dulbecco's Modified Eagle's medium; FBS, fetal bovine serum; PBS,
phosphate-buffered saline; DMSO, dimethyl sulfoxide.
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Skin consists of two main layers, the epidermis and dermis.
During skin aging processes, degenerative changes of the dermis
are more pronounced than those of the epidermis. The dermis is
composed of keratinocytes and extracellular matrix (ECM) such as
collagen, elastin, and proteoglycans [1]. With the aging of skin, the
dermis loses ECMs, particularly collagen [2—4]. One of the main
mechanisms for reducing ECM levels in the dermis is activation of
matrix metalloproteinases (MMPs). MMPs are zinc-dependent en-
dopeptidases composed of four subgroups (collagenases, gelati-
nases, stromelysins, and membrane-type MMPs (MT-MMPs),
cleaving ECM proteins and are functionally classified into [5]. MMP-
2 and -9 belong to the gelatinase group and are involved in the
breakdown of collagen and elastic fibers [6,7]. MMPs are increased
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in both intrinsically aged skin and in photoaged skin caused by
prolonged exposure to ultraviolet (UV) light [8,9]. Therefore,
lowering MMP levels might be a promising approach for anti-aging.

Autophagy, derived from the Greek word “self-eating,” is a set of
highly conserved cellular mechanisms by which unnecessary or
dysfunctional organelles and cellular components are broken down
and recycled in response to nutrient or stress conditions [10].
Macroautophagy, microautophagy, and chaperone-mediated auto-
phagy (CMA) are classified types of autophagy process [11]. Mac-
roautophagy forms autophagosomes with double layered-
membrane structures that engulf cellular cargo [12,13]. Formation
of autophagolysosomes is generated by fusion of autophagosomes
with lysosomes [14,15]. Autophagy plays a role in various normal
cellular functions, including cellular homeostasis maintenance,
differentiation [16], and immune responses [17]. Dysregulation of
autophagy can contribute to diverse pathologies, including cancer,
neurodegeneration, aging, and heart disease [18]. Defects of auto-
phagy also are associated with skin aging. The role of autophagy in
skin aging is understood mainly in terms of regulating proteostasis,
but its precise function remains to be elucidated [ 19]. Nevertheless,
attempts to increase autophagy in senescent skin are warranted for
anti-aging.

Panax ginseng has numerous therapeutic biochemical and
pharmacological effects such as immunomodulatory [20], anti-
inflammatory [21,22], antioxidative [23], anti-cancer [24,25], anti-
fatigue [23], and anti-diabetic effects [26]. Based on these thera-
peutic effects, various parts and active pharmacological compo-
nents of ginseng, including root, berry, and ginsenosides, have been
used as functional foods [27]. Syringaresinol (SYR) (Fig. 1A Left
panel), a plant lignan, is one of the biologically active ingredients
present in ginseng berry [28]. SYR has anti-inflammatory [29], anti-
fungal, and anti-cancer activities [30]. In addition, in skin-related
studies, SYR has been reported to decrease the activity of Fork-
head box O3 (FoxO3a) and mitogen-activated protein kinase
(MAPK), which are aging-related factors [31,32]. However, the
regulatory roles of SYR in aging process of skin are not fully eluci-
dated. Therefore, in the present study, the beneficial effects of SYR
derived from Panax ginseng on skin aging and the underlying bio-
logical mechanism for these effects, particularly those on antioxi-
dant and autophagy regulation were looked over.

2. Materials and methods
2.1. Materials

HaCaT skin keratinocyte cells (American Type Culture Collection
(ATCC) (Rockville, MD, USA) was used. Antibiotics (penicillin-
streptomycin solution) was purchased from Hyclone (Logan, UT,
USA). 3-Methyladenine (3-MA, Fig. 1A Left panel), 3-(4-5-
dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide (MTT)
was obtained from Sigma-Aldrich (St. Louis, MO, USA). The cDNA
synthesis kit was purchased from Thermo Fisher Scientific (Wal-
tham, MA, USA). Primers for determining the mRNA levels of MMP-
2 and -9 were from Bioneer (Seoul, Korea), Antibodies against MMP-2, -9,
LC-3B and P-actin were employed, as reported previously [33]. SYR
(Fig. 1A Left panel) was purified from Panax ginseng berry as re-
ported previously [34]. The purity of the compound was >80%
(Fig. 1A Right panel). A stock solution of SYR was prepared with
100% DMSO.
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2.2. Cell culture

Keratinocyte HaCaT cells were cultured in DMEM with 10% FBS
and 1% antibiotics (penicillin and streptomycin) in a 5% CO, incu-
bator at 37 °C.

2.3. RNA extraction and quantitative polymerase chain reaction

HaCaT cells (2 x 10° cells/ml) plated for 18 h were exposed with
H,0, (500 uM) or SYR (100 or 200 pg/mL). After 24 h, total RNA was
prepared by general extraction method with TRIzol reagent as
carried out before [35]. For synthesizing complementary DNA, a
cDNA synthesis kit was used, and quantitative polymerase chain
reaction was performed with Pcrbio's qPCRBIO SyGreen mix [36].
Primer sequences of MMP-2 and -9 were summarized in Table 1.

2.4. Preparation of cell lysates and immunoblotting analysis

Total lysates of HaCaT cells were obtained using lysis buffer as
reported previously [37]. The prepared whole cell lysates were
tested after clarification by centrifugation at 12,000 rpm for 1 min
at 4 °C. Immunoblotting analysis was used to detect levels of
MMP2, MMP9, LC-3B, and B-actin. Each antibody was treated to the
PVDF membrane in 3% BSA in TBST at a ratio of 1:2500 at 4 °C. After
18 h, the second antibodies (anti-mouse or anti-rabbit antibodies)
were reacted for 1 h at a ratio of 1:2500 at 20 °C. Immunoreactive
bands were detected with enhanced peroxidase detection (EPD) of
ELPIS-BIOTECH in Chemidoc of ATTO.

2.5. Cell viability assay

Whether SYR induces death of HaCaT cells was elucidated by a
conventional MTT assay [38].

In 2 x 10° of HaCaT cells, SYR (12.5—200 pg/mL) was treated for
24 h.

2.6. DPPH and ABTS colorimetric assays

Either SYR (12.5—200 pg/mL) or ascorbic acid (250 pM) was
reacted with 300 uM DPPH or 740 uM ABTS for 15 min at 37 °C.
Then, the absorbance of each mixture was observed at 517 nm or
730 nm with spectrophotometer. The radical scavenging activity
was presented as percent inhibition using the formula: Radical
scavenging activity (%) = [(A0-A1)/A0] x 100, where AO is the
absorbance of DPPH or ABTS alone, and A1 is the absorbance of the
sample.

2.7. Confocal microscopy

HaCaT cells (5 x 10% cells/mL) were transfected with 1 pg/mL of
a GFP-LC3B plasmid using transfection reagent, lipofectamine. After
24 h incubation, the cells were exposed to H,0, (500 uM) or SYR
(200 pg/mL) for 12 h. Then, the cells were fixed with 4% para-
formaldehyde (PFA) in PBS for 10 min, followed by treating Triton
X-100 (0.5%) in PBS for 10 min for permeabilization of the cell
membrane. The cells were continuously treated with PBS contain-
ing 1% BSA for 1 h at 20 °C for blocking. DNA staining was carried
out by adding PBS with 10 pg/mL Hoechst 33342 for 10 min. After
mounting on glass slides, images of the cells were observed using a
laser-scanning confocal microscope (Zeiss LSM 710 META, Ober-
kochen, Germany) with a 63x oil-immersion objective lens.
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Fig. 1. Anti-aging activity of SYR in HaCaT cells. (A) Chemical structure of syringaresinol and 3-Methyladenin (Left panel) and analysis profile of syringaresinol by HPLC (Right panel).
(B, C, and D) Following SYR (100 and 200 pg/mL) treatment, HaCaT cells were incubated with H,0, (500 uM) for 24 h mRNA levels of MMP-2 (B) and MMP-9 (C) were determined by
real-time PCR. Protein levels of MMP-2 and MMP-9 were measured by Western blotting (D). (E) HaCaT cells were treated with various concentrations (0—200 pg/mL) of SYR and
then incubated for 24 h. Protein levels of MMP-2 and MMP-9 were determined by immunoblotting analysis. (F) Viability of SYR-treated HaCaT cells was measured by MTT assay.
#p < 0.05 and **p < 0.01 compared with the normal group; *p < 0.05 and **p < 0.01 compared with the control group.

Table 1
Primer list used in this study.
Gene Direction Sequences
MMP-2 F CAAGTGGAGAGCAGTTGAGGACATC
R TGAGGACATCTCCCACGTCAA
MMP-9 F GCCACTTGTCGGCGATAAGG
R CACTGTCCACCCCTCAGAGC
GAPDH F CACTCACGGCAAATTCAACGGCA
R GACTCCACGACATACTCAGCAC

F: Forward, R: Reverse.

2.8. Statistical analysis

PCR and Western blot analyses were performed three inde-
pendent experiments with each experimental group. Band in-
tensity was determined by Image]. For MTT, DPPH, and ABTS assays,
two separate experiments were carried out. All data in this study
are presented as mean + standard deviation (SD) obtained from
each experiment. Mann-Whitney test was used to evaluate
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significance of each data. Statistical significance was judged with a
p value less than 0.05.

3. Results
3.1. Anti-aging activity of SYR in HaCaT cells

Regardless of intrinsic or extrinsic aging, ROS functions a sig-
nificant role in the skin aging process, and the generated ROS
activate MMPs to accelerate skin aging [39—41]. Therefore, anti-
aging activity of SYR was investigated by measuring changes of
MMP-2 and -9 in hydrogen peroxide (H,0;)-treated HaCaT cells.
Gene expression and protein levels of MMP-2 were found to be
meaningfully enhanced in response to H,0, (Fig. 1B and D). MMP-9
expression also was increased in H,O0»-stimulated cells, although to
a lesser extent than MMP-2 (Fig. 1C and D). SYR (100 and 200 pg/
mL) reduced the MMP-2 and MMP-9 mRNA levels that were
elevated by H,0, (Fig. 1B and C). Consistently, protein levels of
MMP-2 and MMP-9 was downregulated in H;O,-treated cells
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Fig. 3. Effect of SYR on autophagy activation. (A) SYR (100 and 200 pg/mL)-treated HaCaT cells were incubated with H,0, for 12 h. Then, the total level of LC3B was determined by
Western blotting. f-Actin was used as a loading control. (B) HaCaT cells were treated with SYR (50, 100, and 200 pg/mL) for 24 h, and then the total levels of LC3B and f -actin were
determined by immunoblotting analysis. (C and D) HaCaT cells were transfected with a plasmid expressing GFP-LC3B and incubated with 200 pg/mL SYR and H,0, for 12 h (C).
HacaT cells were transfected with plasmid GFP-LC3B and incubated with 200 pg/mL SYR for 24 h (D). Confocal microscopy images were observed using a laser-scanning confocal
microscope (Zeiss LSM 710 META). #p < 0.05 and #*#p < 0.01 compared with the normal group; *p < 0.05 and **p < 0.01 compared with the control group.
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(Fig. 1D). SYR at a concentration of 200 pg/mL reduced MMP-2 and
MMP-9 expression even in the absence of H,0, stimulation
(Fig. 1E). Cell viability was not affected by SYR (Fig. 1F), indicating
that inhibition of MMP-2 and MMP-9 was not due to cytotoxicity.

3.2. In vitro antioxidant activity of SYR

Antioxidant activity of SYR was analyzed by DPPH and ABTS
assays, which are broadly used methods for determining antioxi-
dant activity of a wide range of plant components. The DPPH radical
scavenging activity was dose-dependently enhanced with treat-
ment of SYR compared with the blank group, and the lowest half-
maximal effective concentration (ECsg) was 10.77 pg/mL (Fig. 2A).
SYR also significantly increased the ABTS radical scavenging activ-
ity, and the ECsg against ABTS radicals was 10.35 pg/mL (Fig. 2B). In
addition, SYR had a radical scavenging activity similar to that of
ascorbic acid (250 uM), a strong antioxidant, indicating that SYR has
potent antioxidant activity.

3.3. Activation of autophagy by SYR in HaCaT cells

To investigate whether SYR is participated in autophagy regu-
lation, we detected he autophagy marker LC3B using Western
blotting and confocal microscopy. SYR (100 and 200 pg/mL)
significantly increased LC3B expression in H,O;-treated HaCaT
cells, and SYR (50, 100, and 200 pg/mL) did not affect LC3B
expression in HaCaT cells without H,0; (Fig. 3A and B). In parallel,
exogenous LC3B expression was upregulated by SYR (200 pg/mL) in
H;0,-stimulated HaCaT cells but not in HyO,-free HaCaT cells
(Fig. 3C and D).

3.4. The association between anti-aging activity of SYR and
autophagy activation

The relevance of autophagy activation to anti-aging was
assessed in recovery experiments with 3-MA, an autophagy
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inhibitor. SYR (200 pg/mL) inhibited the MMP-2 expression
elevated by H,0,, but the decreased MMP-2 level was restored in
the 3-MA-treated group (Fig. 4A). However, the decreased MMP-2
expression by SYR was not affected by 3-MA in HaCaT cells
without H,0, (Fig. 4B).

4. Discussion

As the amount of UV light increases due to the recent deterio-
ration of the ecological environment, methods to prevent or delay
skin aging are receiving increased attention [42]. In addition, there
is growing demand for natural, herbal cosmetics because of their
weaker or absent side effects [43]. In this study, we investigated the
feasibility of using SYR as an anti-aging material. Since degradation
of the epidermal and dermal extracellular matrix during skin aging
promotes visible signs such as wrinkle formation, the anti-aging
activity of SYR was assessed in terms of MMP-2 and MMP-9 regu-
lation. SYR (200 pg/mL) inhibited the expression of MMP-2 and -9
at mRNA and protein levels regardless of the presence of H,0, in
human keratinocyte HaCaT cells (Fig. 1B—E), which indicates SYR
has skin anti-aging activity.

Antioxidants such as ascorbic acid, tocopherols, and poly-
phenols increase resistance to oxidative stress, preventing and
improving skin aging [44]. Most plant compounds have antioxidant
activity as part of their physiological adaptation to a highly oxidized
environment [45], and these compounds exert anti-aging activity
via antioxidant properties. SYR also exhibited strong antioxidant
activity similar in potency to that of ascorbic acid (Fig. 2A and B).
This suggests the antioxidant activity of SYR is an effective mech-
anism for preventing aging.

In addition, SYR significantly activated autophagy in H»O0,-
treated HaCaT cells (Fig. 3A and C). While the relevance of auto-
phagy to the aging process is not yet fully understood, we directly
identified the relationship between the anti-aging activity of SYR
and autophagy. The inhibitory activity of SYR on MMP-2 was
reduced under conditions in which autophagy activity was

B
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Fig. 4. Relevance of autophagy activation to the anti-aging activity of SYR. (A and B) HaCaT cells were incubated with H,0, (500 uM) in the presence or absence of SYR (200 pg/mL)
or 3-MA (5 mM) for 24 h (A). HaCaT cells were treated with SYR (200 pg/mL) in the presence or absence of 3-MA (5 mM) for 24 h (B). The expression of MMP-2 and B-actin was

determined by Western blotting. #p < 0.05 and *#
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p < 0.01 compared with the normal group; *p < 0.05 and **p < 0.01 compared with the control group; ns, not significant.
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Fig. 5. Schematic summary of the anti-aging effects of SYR and its mechanisms.

suppressed by 3-MA (Fig. 4A), suggesting that autophagy activation
by SYR is another important mechanism for its anti-aging activity.
Autophagy generally is thought to delay aging by maintaining ho-
meostasis through recycling mechanisms, but the role of autophagy
has been expanding. For example, autophagy suppresses NF-kB
signaling in the inflammatory response [46G]. Given that SYR in-
hibits MMP-2 and -9 expression at the transcription level, and that
NF-kB is an essential transcription factor for MMP expression
(Fig. 1B—D) [47,48], autophagy might exert anti-aging effects by
regulating transcription factors such as NF-kB. Interestingly, SYR
did not activate autophagy in cells without H,0>, and the inhibitory
effect of SYR against MMP-2 was not affected by 3-MA. These re-
sults imply that the anti-aging mechanism of SYR could vary
depending on the stimulant.

5. Conclusion

Collectively, in this study, we looked over the preventive activity
of SYR on skin aging. SYR showed antioxidant activity and up-
regulated autophagy activity in HO,-stimulated HaCaT cells,
thereby decreasing the mRNA expression of MMP-9 and MMP-2 in
relation to skin aging (Fig. 5). Therefore, we propose SYR as a novel
active ingredient for anti-aging cosmetics.
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