• Title/Summary/Keyword: tBHP

Search Result 124, Processing Time 0.025 seconds

In vitro screening of anti-skin aging and antioxidant properties of aqueous/solvent extracts from distinctive stages of silkworm (Bombyx mori L.) pupae

  • Rahul, Kamidi;Kweon, HaeYong;Kim, Hyun-Bok;Lee, Ji Hae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • Silkworm pupae, a by-product of the silk industry are known to be valuable resource of nutrients for humans as well as animals besides encompassing diverse bioactive constituents. However, there is a paucity of knowledge on their role in amelioration of oxidative stress and anti-skin aging properties. In the present study, we evaluated the inhibitory effect of aqueous as well as ethanolic (30% and 70%) extracts from distinct stages of male and female silkworm pupae belonging to two silkworm varieties on skin aging-related enzymes. The activities of collagenase, elastase and tyrosinase were effectively inhibited by 70% ethanolic silkworm pupal extracts (SPE), followed by 30% with aqueous extracts exhibiting meager inhibitory potential. SPE were also investigated for their antioxidant activity in oxidative-stressed murine fibroblasts (L929). The intracellular ROS and lipid peroxidation induced by tert-butyl hydroperoxide (t-BHP) in fibroblasts was better attenuated by pre treatment with ethanolic (30%) and aqueous extracts, respectively. The safety of the extracts was determined by studying their effect on fibroblast cell viability and it was found that none of the extracts were cytotoxic. Our findings indicate the potential utility of SPE as anti-aging components in cosmeceuticals.

Synthesis and Characterization of Poly(urethane-ethyl acrylate) Hybrid Emulsion (폴리(우레탄-에틸 아크릴레이트) 혼성 에멀젼의 합성과 물성 비교 연구)

  • Cheong, In Woo;Lee, Jong Kil;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-92
    • /
    • 2005
  • Poly(urethaneethyl acrylate) hybrid emulsions were synthesized to improve their thermomechanical and solvent resistance properties. In the synthesis, dimethylol propionic acid was used to impart hydrophilicity to the hybrid polymers, and ethyl acrylate monomer was added to the polyurethane prepolymer after neutralization with triethylamine. After dispersion of the neutralized prepolymer, chain extension was carried out with ethylene diamine. Consequently, poly(urethaneethyl acrylate) hybrid emulsion was prepared via soap free emulsion polymerization of ethyl acrylate with reduction-oxidation initiator couple of t-butyl hydroperoxide/sodium bisulfite at $50^{\circ}C$. Tehsile strength, 100% modulus, elongation, and solvent-resistance properties of the hybrid emulsion were measured and compared with those of polyurethane homopolymer, poly(ethyl acrylate) homopolymer, and simple blended samples.

The protective effects of Moxi-tar on injury induced by H2O2 in C6-glioma (H2O2로 유발된 뇌신경세포 상해에 대한 구진의 보호효과)

  • Ahn, Sung-hun;Koo, Sung-tae;Kim, Sun-young;Kim, Kyung-sik;Sohn, In-cheul
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.29-41
    • /
    • 2004
  • Objective : This study was produced to examine the effects of moxibustion that had been played important role to traditional oriental medical treatment on disease. Recently, it was reported that moxi-tar which is generated in the process of moxibustion as burning combustibles decreased NO and iNOS generation in C6-glioma and RAW 264.7 cells in our lab. Methods : C6-glioma cells were cultured in RPMI 1640 with FBS 10% in CO2 incubator. To study the protective effects of moxi-tar, we observed cell viability, DPPH activity, SOD activity, catalase activity and cell morphology after injury with $H_2O_2$. Results and Conclusions : Moxi-tar increased cell viability about twice as much as that of being injury by $H_2O_2$(moxi-tar $40{\mu}g/m{\ell}$, $H_2O_2$ $500{\mu}M$). And the results of free radical scavenger activity($80{\mu}g/m{\ell}$ : $78.91{\pm}4.4%$), SOD activity and catalase activity($80{\mu}g/m{\ell}$ : 21.6unit/mg protein) were increased by moxi-tar as dose-dependent manner. So we concluded that the effects of moxibustion which is played important role in Oriental medicine, might be free radical scavenger effects induced by moxi-tar. Conclusion : These results indicate that tBHP induces apoptosis through a lipid peroxidation-dependent mechanism and JS exerts the protective effect against the apoptosis by preventing peroxidation of membrane lipids.

  • PDF

Antioxidative Effects of Scutellariae Radix Aaquaacupuncture Solution on Lipid Peroxidation Induced by Free Radicals (자유기에 의한 지질과산화 반응에 대한 황금 약침액의 항산화 효능)

  • Kim Sung-Il;Moon Jin-Young;Kim Kap-Sung;Kim Doo-Hie;Nam Kyung-Soo;Lim Jong-Kook
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.1 no.1
    • /
    • pp.48-54
    • /
    • 1997
  • Scutellariae radix, has been used as a natural drug for fever, inflammation, cataract, and liver disease in traditional medicine. This study was performed in order to investigate the antioxidative effects of Scutellariae radix aqua-acupuncture solution (SRAS) on lipid peroxidation by free radicals. Lipid peroxidation levels were determined by TBA method during the autoxidation of linoleic acid. In this linoleic acid autoxidation system, SRAS markedly exhibited antioxidant activity, which inhibited 89% of linoleic acid peroxidation. SRAS showed scavenging effects on ${\alpha},{\alpha}-diphenyl-{\beta}-picrylhydrazyl$(DPPH) radical, inhibited superoxide generation in xanthine-xathine oxidase system, and also inhibited lipid peroxidation of rat liver tissue by hydroxyl radical derived from $H_2O_2-FE^{+2}$ system. These effects were similar to those of $dl-{\alpha}-tocopherol$, BHA and BHT. In addition, SRAS protected the cell death induced by ter-butyl hydroperoxide (t-BHP) and significantly increased cell viability in the normal rat liver cell (Ac2F). On the basis of these results, it is suggested that SRAS might play a protective role in lipid peroxidation by free radicals.

  • PDF

Evaluation of Clinical Usefulness of Herbal Mixture HO-Series for Improving Hangover (복합생약 HO-Series의 숙취개선 임상적 유용성 평가)

  • Chang, Bo Yoon;Bae, Jin Hye;Kim, Da Eun;Kim, Dae Sung;Cho, Hyoung Kwon;Kim, Sung Yeon
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.278-290
    • /
    • 2020
  • The purpose of this study is to investigate the hangover relieving effect of HO-series. HO-S1 is an herbal mixture, which consists of extracts from Flower of Pueraria lobata Ohwi, Glycyrrhiza glabra Linné, Fruit of Lycium chinense Miller, Poria cocos Wolf, Acanthopanax sessiliflorum Seeman, Scutellaria baicalensis Georgi, Atractylodes lancea De Candlle and Zingiber officinale Roscoe. HO-S2 is a candidate that has been performed to ultra filtration based on HO-S1. HO-S3 is a mixture of amino acids and vitamins based on HO-S2. HO-01 is the final beverage base produced based on HO-S3. The antioxidant activity of HO-series was similar to that of vitamin C or trolox. The production of t-BHP induced reactive oxygen species(ROS) was significantly blocked in the presence of HO-series. In vivo study, AUC of alcohol and acetaldehyde concentrations in HO-S2 and HO-S3 treated groups significantly decreased. Hepatic alcohol dehydrogenase(ADH) and acetaldehyde dehydrogenase(ALDH) activity were significantly higher in HO-S2 and HO-S3 treated groups. And 2E1 activity and glutathione were significantly elevated, while the malondialdehyde level was not significantly in liver tissue. After alcohol exposure, the sensitivity scores of blood alcohol and acetaldehyde concentration and hangover symptoms were significantly decreased in the HO-01 intake group compared with the non-intake group. ALDH activity was significantly increased in the HO-01 intake group. HO-series have antioxidant activity and a protective effect from ROS. HO-S2, HO-S3 and HO-01 are potentially highly beneficial in relieving hangover, as it scavenges reactive free radicals and boosts the endogenous antioxidant system.

Changes of Blood pH in Micro-circulation System on the Stimulated Time of Pulsed Magnetic Fields (펄스자기장 자극 시간에 따른 미세순환시스템 내에서 혈액의 pH변화)

  • Lee, Boram;Choi, Yukyung;Lee, Hyunsook
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.214-218
    • /
    • 2022
  • The purpose of this study was to investigate the role of the PMF in the treatment of acidosis and inflammation by monitoring the pH change for the continuity of PMF effect on the blood in the micro-circulation system that mimics the capillaries in the human body. Micro-tubes and micro-channels similar in diameter to those of arteries and arterioles were fabricated using PDMS and connected to a micro-pump for blood circulation. The continuity of PMF effect was verified in a micro-circulation system in-vitro. The pH changes for the circulating blood and for persistence time of PMF stimulus effect were confirmed using the optimized PMF conditions based on the previous studies. Also pH changes were observed by continuously stimulating PMF for a set period of time. The result was observed that the pH of the blood acidified using tBHP continued to rise from immediately after stimulation of PMF to 70 minutes of stimulation, reaching a normal pH range, and then decreasing. Our study showed that PMF has a positive effect on the control of blood pH homeostasis, so it is suggested the possibility of being used as a noninvasive treatment for acidosis treatment and anti- inflammatory treatment.

Effect of Fermented Ice Plant (Mesembryanthemum crystallinum L.) Extracts against Antioxidant, Antidiabetic and Liver Protection (아이스플랜트(Mesembryanthemum crystallinum L.) 발효추출물의 항산화, 항당뇨 및 간 보호효과)

  • Nam, Sanghae;Kang, Seungmi;Kim, Seonjeong;Ko, Keunhee
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.909-918
    • /
    • 2017
  • Ice plant (Mesembryanthemum crystallinum L.) was fermented in brine in the form of mulkimchi (IPMB), and its contents of organic acid and cyclitols and biological activities were compared with those before fermentation. The pH of the IPMB continuously decreased until the sixth day of fermentation. The lactic acid yield was greatest on the fourth day. D-pinitol in ice plant mulkimchi solids (IPMS) decreased during fermentation. However, myo-inositol and D-chiro-inositol increased. The radical scavenging activities of ABTS and DPPH, in addition to the activity of FRAP, of the IPMS extract were generally higher after fermentation, with the activities highest on the fifth ($79.09{\pm}0.69%$), fourth ($87.55{\pm}1.21%$), and sixth ($78.72{\pm}0.99%$) days of fermentation, respectively, when treated with 1 mg/ml of the extract. As shown by a lipid/MA assay, antioxidant activity was generally higher after fermentation. The viability of BNL CL.2 cells damaged by t-BHP, $H_2O_2$, and ethanol was $14.19{\pm}0.98$, $13.80{\pm}2.25$, and $25.89{\pm}2.90%$, respectively. When treated with $200{\mu}g/ml$ of IPMS extract, the cell viability was $57.06{\pm}4.52%$ on the first day, and $66.06{\pm}1.36%$ on the fourth day, and $50.07{\pm}04.85%$ on the sixth day of fermentation. Hepatocyte protective effects did not increase significantly after fermentation. ${\alpha}-glucosidase$ inhibitory activity was quite high, with a range of $83.52{\pm}2.69$ to $92.79{\pm}2.16%$, and the activity increased gradually in all the groups over the fermentation period. There was no clear correlation between ${\alpha}-amylase$ inhibitory activity and fermentation.

Antioxidant Activity and Protective Effects of Cirsium japonicum against Damaged Mouse Liver Cell (BNL CL.2) (엉겅퀴의 항산화 활성 및 손상된 흰쥐 간세포(BNL CL.2)에 대한 간 보호 효과)

  • Kim, Seonjeong;Kang, Seungmi;Ko, Keonhee;Nam, Sanghae
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.442-449
    • /
    • 2017
  • We analyzed the content of total phenolic and silymarin compounds of Cirsium japonicum (CJ), and its antioxidant activities and Liver protective effects were compared with those of Silybum marianum (SM). The total phenolic content in the aerial part ($97.22{\pm}5.51mg/g$) of CJ is higher than that in the underground part ($85.32{\pm}3.06mg/g$). The total silymarin content of CJ was 55.56% of SM, with the underground part ($0.47{\pm}0.03mg/g$) having higher content than the aerial part ($0.18{\pm}0.02mg/g$). The antioxidant activity of CJ was generally slightly lower than that of milk thistle, and the underground part of CJ generally had higher activity compared to the aerial part. When CJ extracts were processed at 1 mg/ml, DPPH activities were $83.76{\pm}0.60$ and $88.28{\pm}0.17%$, and FRAP activities were $77.63{\pm}0.70$ and $82.83{\pm}0.39%$ for extracts from aerial part and underground part, respectively. ABTS activities were $68.60{\pm}1.24$ and $63.41{\pm}0.57%$ for underground and aerial part respectively when extracts were processed at 0.1 mg/ml. The Liver protective effects of CJ were higher in the extracts from underground part compared to the aerial part, Liver cells were damaged by treating them with t-BHP, $H_2O_2$ and Ethanol, and then they were treated with 0.2 mg/ml CJ extracts. The survival rates of the damaged liver cells were $49.58{\pm}0.34$, $76.87{\pm}1.10$ and $71.73{\pm}0.58%$ respectively, which were higher than the cells not treated with extracts.

Enhancement of Bioactive Compounds in Mugwort Grown under Hydroponic System by Sucrose Supply in a Nutrient Solution (양액 내 자당 처리에 의한 수경재배 쑥의 생리활성물질 증진)

  • Moon-Sun Yeom;Jun-Soo Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • Sucrose (suc) is a disaccharide that consists of glucose (glu) and fructose (fru). It is a carbohydrate source that acts as a nutrient molecule and a molecular signal that regulates gene expression and alters metabolites. This study aimed to evaluate whether suc-specific signaling induces an increase in bioactive compounds by exogenous suc absorption via roots or whether other factors, such as osmotic stress or biotic stress, are involved. To compare the osmotic stress induced by suc treatment, 4-week-old cultured mugwort plants were subjected to Hoagland nutrient solution with 10 mM, 30 mM, and 50 mM of suc or mannitol (man) for 3 days. Shoot fresh weight in suc and man treatments was not significantly different from the control. Both man and suc treatments increased the content of bioactive compounds in mugwort, but they displayed different enhancement patterns compared to the suc treatments. Mugwort extract treated with suc 50 mM effectively protected HepG2 liver cells damaged by ethanol and t-BHP. To compare the biotic stress induced by suc treatment, 3-week-old mugwort plants were subjected to microorganism and/or suc 30 mM with Hoagland nutrient solution. Microorganisms and/or suc 30 mM treatments showed no difference about the shoot fresh weight. However, sugar content in mugwort treated with suc 30 mM and microorganism with suc 30 mM treatment was significantly higher than that of the control. Suc 30 mM and microorganism with suc 30 mM were effective in enhancing bioactive compounds than microorganism treatment. These results suggest that mugwort plants can absorb exogenous suc via roots and the enhancement of bioactive compounds by suc treatment may result not from osmotic stress or biotic stress because of microorganism, but by suc-specific signaling.

In vitro Antioxidant Activity of Sanguisorbae Radix Ethanol Extracts (지유 에탄올추출물의 생체외 항산화 활성)

  • Rhim, Tae-Jin
    • Korean Journal of Plant Resources
    • /
    • v.26 no.2
    • /
    • pp.149-158
    • /
    • 2013
  • The objective of this study was to investigate the antioxidative capacity of ethanol extracts from Sanguisorbae officinalis L. root (Sanguisorbae radix) in vitro. The concentration of Sanguisorbae radix extract at which DPPH radical scavenging activity was inhibited by 50% was 0.33 mg/mL, which was similar to $IC_{50}$ of ${\alpha}$-tocopherol (0.40 mg/mL), as compared to 100% by pyrogallol as a reference. Total antioxidant status was examined by total antioxidant capacity against ABTS radical reactions. Total antioxidant capacities of Sanguisorbae radix extract were significantly (p<0.05) higher than those of ${\alpha}$-tocopherol. Superoxide scavenging activities of Sanguisorbae radix extract were significantly (p<0.05) higher than those of catechin. Oxygen radical absorbance capacities of Sanguisorbae radix extract were significantly (p<0.05) higher than those of ascorbic acid. Cupric reducing antioxidant capacities of Sanguisorbae radix extract were significantly (p<0.05) higher than those of ${\alpha}$-tocopherol. Sanguisorbae radix extract prevented supercoiled DNA strand breakage induced by hydroxyl radical and peroxyl radical. Total phenolic contents of Sanguisorbae radix extract at concentrations of 0.5 and 5 mg/mL were 0.50 and 3.33 mM gallic acid equivalents, respectively. Sanguisorbae radix extract at concentration of 0.01, 0.1 and 0.5 mg/mL inhibited 0.2 mM tert-butyl hydroperoxide-induced cytotoxicity by 33.8, 79.1 and 96.9%, respectively, in HepG2 cell culture system. Thus, strong antioxidant and cytotoxicity-ihnibiting effects of Sanguisorbae radix extract seem to be due to, at least in part, the prevention from free radicals-induced oxidation as well as high levels in total phenolic contents.