• Title/Summary/Keyword: systems thinking education

Search Result 162, Processing Time 0.028 seconds

An Analysis of High School Students' Systems Thinking and Understanding of the Earth Systems through their Science Writing (과학 글쓰기를 통한 고등학생의 지구 시스템에 대한 이해와 시스템 사고의 분석)

  • Lee, Hyundong;Kim, Taesu;Lee, Hyonyong
    • Journal of the Korean earth science society
    • /
    • v.38 no.1
    • /
    • pp.91-104
    • /
    • 2017
  • The purposes of this study were to analyze high school students' understanding about the Earth system and systems thinking process, and to develop science writing programs designed to assess students' understanding about themes of Earth Science such as global warming, volcanoes, and desertification. A total of 8 $11^{th}$ grade students from general high schools participated in the writing program and draw the causal maps. The methods of this study are as follows. First, DAET-C was used to investigate the way of students' understanding about the Earth systems. What the students' best understood was the component of the Earth systems followed by the interaction of the Earth systems and the scientific literacy of Earth science. Second, feedback circulations on the causal maps were found in four students in global warming section, one student in volcanic eruption section, and four students in desertification section, which means that systems thinking was not largely employed by the students. Consequently, the student participants understood that the global change was happening in correlation with complex concepts and factors, but they were short of using systems thinking in their science study. Therefore, the result of this study suggests that more studies be conducted to develop systems thinking in Earth Science learning through science writing programs.

Creative Engineering Design Education Utilizing the Problem-solving Process and Skills of Critico(-Creative) Thinking (비판(-창의)적 사고의 문제 해결 과정과 기량을 활용한 창의 공학 설계 교육)

  • Park, Sang Tae;Kim, Jedo
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.68-75
    • /
    • 2021
  • ABEEK recommends convergent engineering projects to nurture creative problem-solving ability for 1st year engineering students through 'Creative Engineering Design' course. However, 1st year engineering students, who have not yet studied core subjects in engineering, have difficulties understanding and coping with the challenges posed by the engineering-related projects. For this reason, the educational objectives of this course are usually frustrating to achieve by the instructor. In this paper, by using the problem-solving process and skills of critico(-creative) thinking, we prepare guidelines for creative engineering design education that allow 1st-year students to effectively participate in engineering projects without a complete understanding of the design process which is to be studied. Also, we present a case study that applies the guidelines to an on-going creative engineering design course and discusses the outcomes by showing student-generated works. The results showed that the intuitive content and everyday expression of critico(-creative) thinking education enabled the instructor to effectively guide their students through the requirements of engineering projects without relying on advanced engineering design methods, and that the application of these guidelines also helped improve students' communication skills, including presentation. We show that the guidelines for creative engineering design education utilizing the problem-solving process and skills of critico(-creative) thinking is not only contributing to achieving the educational objectives of the creative engineering design course but can also be an educational paradigm that incorporates critico(-creative) thinking education into engineering education.

Revalidation of Measuring Instrument Systems Thinking and Comparison of Systems Thinking between Science and General High School Students (과학 고등학교와 일반 고등학교 학생들을 대상으로 시스템 사고측정 도구의 타당도 검증 및 시스템 사고 비교)

  • Lee, Hyonyong;Lee, Hyundong
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.6
    • /
    • pp.1237-1247
    • /
    • 2013
  • The purposes of this study are 1) to revalidate the developed Measuring Instrument Systems Thinking and 2) to compare systems thinking skills between gifted and non-gifted high school students. For the test, 116 gifted science students and 553 non-gifted students were sampled from high schools. Exploratory factor analysis and confirmatory factor analysis were performed and Independent t-test was performed using the average of the two groups. The finding of the exploratory factor analysis indicated 5 factors in the model with 4 items per single factor. The result of confirmatory factor analysis was generally appropriate and acceptable (5 factor model: ${\chi}^2/df$ : 2.765, TLI=.907, CFI=.929, IFI=.930, RMSEA=.044). The reliability for 20 items turned out to be high because the Cronbach's alphas were at .875 and .693~.751 per each factor. In addition, the result of t-test showed that systems thinking skills among gifted science students were significantly higher than non-gifted students. This study could be expanded to measuring systems thinking with qualitative research tools and to various school levels.

Verification the Systems Thinking Factor Structure and Comparison of Systems Thinking Based on Preferred Subjects about Elementary School Students' (초등학생의 시스템 사고 요인 구조 검증과 선호 과목에 따른 시스템 사고 비교)

  • Lee, Hyonyong;Jeon, Jaedon;Lee, Hyundong
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.2
    • /
    • pp.161-171
    • /
    • 2019
  • The purposes of this study are: 1) to verify the systems thinking factor structure of elementary school students and 2) to compare systems thinking according to their preferred subjects in order to get implications for following research. For the study, pre-tests analyze data from 732 elementary school students using the STMI (Systems Thinking Measuring Instrument) developed by Lee et al. (2013). And exploratory factor analysis was conducted to identify the factor structure of the students. Based on the results of the pre-test, the expert group council revised the STMI so that elementary school students could respond to the 5-factor structure that STMI intended. In the post-test, 503 data were analyzed by modified STMI and exploratory factor analysis was performed. The results of the study are as follows: First, in the pre-test, elementary school students responded to the STMI with a test paper consisting of two factors (personal internal factors and personal external factors). The total reliability of the instrument was .932 and the reliability of each factor was analyzed as .857 and .894. Second, for modified STMI, elementary school students responded a 4-factor instrument. Team learning, Shared Vision, and Personal Mastery were derived independent factors, and mental model and systems analysis were derived 1-factor. The total reliability of the instrument was .886 and the reliability of each factor was analyzed as .686 to .864. Finally, a comparison of systems thinking according to preferred subjects showed a significant difference between students who selected science (engineering) group and art (music and physical education). In conclusion, it was confirmed that statistically meaningful results could be obtained using STMI modified by term and sentence structure appropriate for elementary school students, and it is a necessary to study the relation of systems thinking with various student variables such as the preferred subjects.

The Process of Elaboration in Pre-service Science Teachers' Conceptions of Scientific Thinking (과학적 사고에 관한 예비 과학교사의 개념 정교화 과정)

  • Lee, Sun-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.937-954
    • /
    • 2008
  • Although the development of scientific thinking is one of the significant goals in science education in schools, there is a lack of empirical research on how science teachers conceptualize scientific thinking. This study explored how four pre-service secondary-level science teachers conceptualized scientific thinking and elaborated their conceptions through peer discussions. Results involved each pre-service teacher's conceptual spectrum of scientific thinking and showed the process of elaboration in their conceptions about three crucial issues in small-group or larger discussions. Three issues related to scientific thinking included everyday vs. scientific thinking, the relationship between science knowledge and scientific thinking, and the relationship between logical systems and evidence. Implications for pre-service science teacher education were discussed, and further research was suggested based on the results of this study.

Effect of Systems Thinking Based STEAM Education Program on Climate Change Topics (시스템 사고에 기반한 STEAM 교육 프로그램이 기후변화 학습에 미치는 효과)

  • Cho, Kyu-Dohng;Kim, Hyoungbum
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.7
    • /
    • pp.113-123
    • /
    • 2017
  • This research is designed to review the systems thinking and STEAM theory while ascertaining the effects of the classroom application of the STEAM programs based on systems thinking appropriate for studying climate change. The systems thinking based STEAM program has been developed by researchers and experts, who had participated in expert meetings in a continued manner. The program was applied to science classes over the course of eight weeks. Therefore, the application effects of the systems thinking based STEAM program were analyzed in students' systems thinking, STEAM semantics survey, and students' academic achievement. The findings are as follows. First, the test group has shown a statistically meaningful difference in the systems thinking analysis compared to the control group in the four subcategories of 'Systems Analysis', 'Personal Mastery', 'Shared Vision' and 'Team Learning' except for 'Mental Model'. Second, in the pre- and post-knowledge tests, the independent sample t-test results in the areas of science, technology, engineering, art and mathematics show statistically meaningful differences compared to the control group. Third, in the academic performance test regarding climate change, the test group displayed higher achievement than the control group. In conclusion, the system-based STEAM program is considered appropriate to enhance amalgamative thinking skills based on systems thinking. In addition, the program is expected to improve creative thinking and problem-solving abilities by offering new ideas based on climate change science.

The Effects of Educational Robot-based SW Convergence Education on Primary Students' Computational Thinking, Collaborative and Communication Skills (교육용로봇기반 SW융합교육이 초등학생의 컴퓨팅 사고력, 협업능력 및 의사소통능력에 미치는 효과)

  • Choi, Hyungshin;Lee, Jeongmin
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • The aim of software education is to increase students' Computational Thinking(CT) skills that they can compose problems and provide solutions which can be carried out effectively by information-processing systems. Furthermore, if problem solving situations can provide students with meaningful problem solving opportunities in authentic social contexts, then software education would be more valuable. This study pursued educational robot-based SW convergence education where 4th grade primary students have access to tangible outputs and can engage in authentic problem solving situations working with peers by using robots and programming. In addition, this study investigated the effectiveness of the classes in terms of computational thinking skills and social capabilities(collaborative skills and communication skills). The current study provides educational robot-based SW convergence education cases of a primary school and discusses the effectiveness of the classes in terms of students' computational thinking skills and social capabilities.

Design of Programming Learning Process using Hybrid Programming Environment for Computing Education

  • Kwon, Dai-Young;Yoon, Il-Kyu;Lee, Won-Gyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1799-1813
    • /
    • 2011
  • Many researches indicate that programming learning could help improve problem solving skills through algorithmic thinking. But in general, programming learning has been focused on programming language features and it also gave a heavy cognitive load to learners. Therefore, this paper proposes a programming activity process to improve novice programming learners' algorithmic thinking efficiently. An experiment was performed to measure the effectiveness of the proposed programming activity process. After the experiment, the learners' perception on programming was shown to be changed, to effective activity in improving problem solving.

Factor Analysis of Visual Literacy Influencing Diagram Understanding and Drawing in Computer Science Education

  • Park, Chan Jung;Hyun, Jung Suk
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • Recently, with the advent of the software-based society, many organizations have been providing software developing education, such as coding, to Computer Science majors and non-Computer Science majors. When implementing a program, teachers can let students draw a variety of diagrams, such as flowcharts, UML diagrams, and ERD diagrams ahead. As the importance of computational thinking is increasingly emphasized, abstracting algorithms into diagrams is considered an important educational element. In this paper, we examined the visual literacy and abstract/concrete way of thinking of novice programmers in order to analyze factors affecting the abstraction process of drawing diagrams, and how they influence students' ability to understand diagrams and ability to draw. If we understand what factors influence the abstraction process in this study, we can suggest educational alternatives for future strategies in which teachers will teach students.

A Study on the Education of Creative Engineering Design Methodology (창의적 공학설계방법론 교육에 관한 연구)

  • Lee, Kun-Sang;Kim, Kang
    • Journal of Engineering Education Research
    • /
    • v.15 no.4
    • /
    • pp.94-100
    • /
    • 2012
  • The needs for enhancing creativity in engineering design education continue to increase. Recent studies about a learning environment and learning support tools provide some new possibilities. The education of creative thinking however must begin from the change of attitude of students to creativity. The experimental results and some lessons for modification of systematic engineering design methodology to creative were reported from the course 'engineering design'.