• Title/Summary/Keyword: systems biology

Search Result 1,888, Processing Time 0.034 seconds

GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress

  • Kim, Hyeon Ju;Lee, Yoseob;Fang, Sungsoon;Kim, Won;Kim, Hyo Jung;Kim, Jae-woo
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.317-322
    • /
    • 2020
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. NAFLD can further progress to irreversible liver failure such as non-alcoholic steatohepatitis (NASH) fibrosis and cirrhosis. However, specific regulator of NASH-fibrosis has yet to be established. Here, we found that glutathione peroxidase 7 (GPx7) was markedly expressed in NASH fibrosis. Although GPx7 is an antioxidant enzyme protecting other organs, whether GPx7 plays a role in NASH fibrosis has yet to be studied. We found that knockdown of GPx7 in transforming growth factor-β (TGF-β) and free fatty acids (FFA)-treated LX-2 cells elevated the expression of pro-fibrotic and pro-inflammatory genes and collagen synthesis. Consistently, GPx7 overexpression in LX-2 cells led to the suppression of ROS production and reduced the expression of pro-fibrotic and pro-inflammatory genes. Further, NASH fibrosis induced by choline-deficient amino acid defined, high fat diet (CDAHFD) feeding was significantly accelerated by knockdown of GPx7, as evidenced by up-regulated liver fibrosis and inflammation compared with CDAHFD control mice. Collectively, these results suggest that GPx7 might be a novel therapeutic target to prevent the progression and development of NAFLD.

Physiological Functions of the COPI Complex in Higher Plants

  • Ahn, Hee-Kyung;Kang, Yong Won;Lim, Hye Min;Hwang, Inhwan;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.866-875
    • /
    • 2015
  • COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed ${\alpha}-$, ${\beta}-$, ${\beta}^{\prime}-$, ${\gamma}-$, ${\delta}-$, ${\varepsilon}-$, and ${\zeta}$-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ${\beta}^{\prime}$-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.

Pressure-Overload Cardiac Hypertrophy Is Associated with Distinct Alternative Splicing Due to Altered Expression of Splicing Factors

  • Kim, Taeyong;Kim, Jin Ock;Oh, Jae Gyun;Hong, Seong-Eui;Kim, Do Han
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Chronic pressure-overload cardiac hypertrophy is associated with an increased risk of morbidity/mortality, largely due to maladaptive remodeling and dilatation that progresses to dilated cardiomyopathy. Alternative splicing is an important biological mechanism that generates proteomic complexity and diversity. The recent development of next-generation RNA sequencing has improved our understanding of the qualitative signatures associated with alternative splicing in various biological conditions. However, the role of alternative splicing in cardiac hypertrophy is yet unknown. The present study employed RNA-Seq and a bioinformatic approach to detect the RNA splicing regulatory elements involved in alternative splicing during pressure-overload cardiac hypertrophy. We found GC-rich exonic motifs that regulate intron retention in 5' UTRs and AT-rich exonic motifs that are involved in exclusion of the AT-rich elements that cause mRNA instability in 3' UTRs. We also identified motifs in the intronic regions involved in exon exclusion and inclusion, which predicted splicing factors that bind to these motifs. We found, through Western blotting, that the expression levels of three splicing factors, ESRP1, PTB and SF2/ASF, were significantly altered during cardiac hypertrophy. Collectively, the present results suggest that chronic pressure-overload hypertrophy is closely associated with distinct alternative splicing due to altered expression of splicing factors.

CDRgator: An Integrative Navigator of Cancer Drug Resistance Gene Signatures

  • Jang, Su-Kyeong;Yoon, Byung-Ha;Kang, Seung Min;Yoon, Yeo-Gha;Kim, Seon-Young;Kim, Wankyu
    • Molecules and Cells
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2019
  • Understanding the mechanisms of cancer drug resistance is a critical challenge in cancer therapy. For many cancer drugs, various resistance mechanisms have been identified such as target alteration, alternative signaling pathways, epithelial-mesenchymal transition, and epigenetic modulation. Resistance may arise via multiple mechanisms even for a single drug, making it necessary to investigate multiple independent models for comprehensive understanding and therapeutic application. In particular, we hypothesize that different resistance processes result in distinct gene expression changes. Here, we present a web-based database, CDRgator (Cancer Drug Resistance navigator) for comparative analysis of gene expression signatures of cancer drug resistance. Resistance signatures were extracted from two different types of datasets. First, resistance signatures were extracted from transcriptomic profiles of cancer cells or patient samples and their resistance-induced counterparts for >30 cancer drugs. Second, drug resistance group signatures were also extracted from two large-scale drug sensitivity datasets representing ~1,000 cancer cell lines. All the datasets are available for download, and are conveniently accessible based on drug class and cancer type, along with analytic features such as clustering analysis, multidimensional scaling, and pathway analysis. CDRgator allows meta-analysis of independent resistance models for more comprehensive understanding of drug-resistance mechanisms that is difficult to accomplish with individual datasets alone (database URL: http://cdrgator.ewha.ac.kr).

Yeast as a Touchstone in Post-genomic Research: Strategies for Integrative Analysis in Functional Genomics

  • Castrillo, Juan I.;Oliver, Stephen G.
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.93-106
    • /
    • 2004
  • The new complexity arising from the genome sequencing projects requires new comprehensive post-genomic strategies: advanced studies in regulatory mechanisms, application of new high-throughput technologies at a genome-wide scale, at the different levels of cellular complexity (genome, transcriptome, proteome and metabolome), efficient analysis of the results, and application of new bioinformatic methods in an integrative or systems biology perspective. This can be accomplished in studies with model organisms under controlled conditions. In this review a perspective of the favourable characteristics of yeast as a touchstone model in post-genomic research is presented. The state-of-the art, latest advances in the field and bottlenecks, new strategies, new regulatory mechanisms, applications (patents) and high-throughput technologies, most of them being developed and validated in yeast, are presented. The optimal characteristics of yeast as a well-defined system for comprehensive studies under controlled conditions makes it a perfect model to be used in integrative, 'systems biology' studies to get new insights into the mechanisms of regulation (regulatory networks) responsible of specific phenotypes under particular environmental conditions, to be applied to more complex organisms (e.g. plants, human).

From the Sequence to Cell Modeling: Comprehensive Functional Genomics in Escherichia coli

  • Mori, Hirotada
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.83-92
    • /
    • 2004
  • As a result of the enormous amount of information that has been collected with E. coli over the past half century (e.g. genome sequence, mutant phenotypes, metabolic and regulatory networks, etc.), we now have detailed knowledge about gene regulation, protein activity, several hundred enzyme reactions, metabolic pathways, macromolecular machines, and regulatory interactions for this model organism. However, understanding how all these processes interact to form a living cell will require further characterization, quantification, data integration, and mathematical modeling, systems biology. No organism can rival E. coli with respect to the amount of available basic information and experimental tractability for the technologies needed for this undertaking. A focused, systematic effort to understand the E. coli cell will accelerate the development of new post-genomic technologies, including both experimental and computational tools. It will also lead to new technologies that will be applicable to other organisms, from microbes to plants, animals, and humans. E. coli is not only the best studied free-living model organism, but is also an extensively used microbe for industrial applications, especially for the production of small molecules of interest. It is an excellent representative of Gram-negative commensal bacteria. E. coli may represent a perfect model organism for systems biology that is aimed at elucidating both its free-living and commensal life-styles, which should open the door to whole-cell modeling and simulation.

Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism

  • Davies, Oluwafemi;Mendes, Pedro;Smallbone, Kieran;Malys, Naglis
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.259-264
    • /
    • 2012
  • Accumulation of modified nucleotides is defective to various cellular processes, especially those involving DNA and RNA. To be viable, organisms possess a number of (deoxy)nucleotide phosphohydrolases, which hydrolyze these nucleotides removing them from the active NTP and dNTP pools. Deamination of purine bases can result in accumulation of such nucleotides as ITP, dITP, XTP and dXTP. E. coli RdgB has been characterised as a deoxyribonucleoside triphosphate pyrophosphohydrolase that can act on these nucleotides. S. cerevisiae homologue encoded by YJR069C was purified and its (d)NTPase activity was assayed using fifteen nucleotide substrates. ITP, dITP, and XTP were identified as major substrates and kinetic parameters measured. Inhibition by ATP, dATP and GTP were established. On the basis of experimental and published data, modelling and simulation of ITP, dITP, XTP and dXTP metabolism was performed. (d)ITP/(d)XTPase is a new example of enzyme with multiple substrate-specificity demonstrating that multispecificity is not a rare phenomenon

Post-Translational Regulation of miRNA Pathway Components, AGO1 and HYL1, in Plants

  • Cho, Seok Keun;Ryu, Moon Young;Shah, Pratik;Poulsen, Christian Peter;Yang, Seong Wook
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.581-586
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants.

The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease

  • Shin, Woo Hyun;Park, Joon Hyung;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The ubiquitin-proteasome system (UPS) and autophagy are two major degradative pathways of proteins in eukaryotic cells. As about 30% of newly synthesized proteins are known to be misfolded under normal cell conditions, the precise and timely operation of the UPS and autophagy to remove them as well as their tightly controlled regulation, is so important for proper cell function and survival. In the UPS, target proteins are labeled by small proteins called ubiquitin, which are then transported to the proteasome complex for degradation. Alternatively, many greatly damaged proteins are believed to be delivered to the lysosome for autophagic degradation. Although these autophagy and UPS pathways have not been considered to be directly related, many recent studies proposed their close link and dynamic interconversion. In this review, we'll focus on the several regulatory molecules that function in both UPS and autophagy and their crosstalk. Among the proposed multiple modulators, we will take a closer look at the so-called main connector of UPS-autophagy regulation, p62. Last, the functional role of p62 in the mitophagy and its implication for the pathogenesis of Parkinson's disease, one of the major neurodegenerative diseases, will be briefly reviewed.

Analysis and Subclass Classification of Microarray Gene Expression Data Using Computational Biology (전산생물학을 이용한 마이크로어레이의 유전자 발현 데이터 분석 및 유형 분류 기법)

  • Yoo, Chang-Kyoo;Lee, Min-Young;Kim, Young-Hwang;Lee, In-Beum
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.10
    • /
    • pp.830-836
    • /
    • 2005
  • Application of microarray technologies which monitor simultaneously the expression pattern of thousands of individual genes in different biological systems results in a tremendous increase of the amount of available gene expression data and have provided new insights into gene expression during drug development, within disease processes, and across species. There is a great need of data mining methods allowing straightforward interpretation, visualization and analysis of the relevant information contained in gene expression profiles. Specially, classifying biological samples into known classes or phenotypes is an important practical application for microarray gene expression profiles. Gene expression profiles obtained from tissue samples of patients thus allowcancer classification. In this research, molecular classification of microarray gene expression data is applied for multi-class cancer using computational biology such gene selection, principal component analysis and fuzzy clustering. The proposed method was applied to microarray data from leukemia patients; specifically, it was used to interpret the gene expression pattern and analyze the leukemia subtype whose expression profiles correlated with four cases of acute leukemia gene expression. A basic understanding of the microarray data analysis is also introduced.