Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0115

Physiological Functions of the COPI Complex in Higher Plants  

Ahn, Hee-Kyung (Department of Systems Biology, Yonsei University)
Kang, Yong Won (Department of Systems Biology, Yonsei University)
Lim, Hye Min (Department of Systems Biology, Yonsei University)
Hwang, Inhwan (Division of Molecular and Life Sciences, Pohang University of Science and Technology)
Pai, Hyun-Sook (Department of Systems Biology, Yonsei University)
Abstract
COPI vesicles are essential to the retrograde transport of proteins in the early secretory pathway. The COPI coatomer complex consists of seven subunits, termed ${\alpha}-$, ${\beta}-$, ${\beta}^{\prime}-$, ${\gamma}-$, ${\delta}-$, ${\varepsilon}-$, and ${\zeta}$-COP, in yeast and mammals. Plant genomes have homologs of these subunits, but the essentiality of their cellular functions has hampered the functional characterization of the subunit genes in plants. Here we have employed virus-induced gene silencing (VIGS) and dexamethasone (DEX)-inducible RNAi of the COPI subunit genes to study the in vivo functions of the COPI coatomer complex in plants. The ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP subunits localized to the Golgi as GFP-fusion proteins and interacted with each other in the Golgi. Silencing of ${\beta}^{\prime}-$, ${\gamma}-$, and ${\delta}$-COP by VIGS resulted in growth arrest and acute plant death in Nicotiana benthamiana, with the affected leaf cells exhibiting morphological markers of programmed cell death. Depletion of the COPI subunits resulted in disruption of the Golgi structure and accumulation of autolysosome-like structures in earlier stages of gene silencing. In tobacco BY-2 cells, DEX-inducible RNAi of ${\beta}^{\prime}$-COP caused aberrant cell plate formation during cytokinesis. Collectively, these results suggest that COPI vesicles are essential to plant growth and survival by maintaining the Golgi apparatus and modulating cell plate formation.
Keywords
autophagy; cell death; cell plate formation; COPI vesicle; Golgi localization; virus-induced gene silencing;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Min, M.K., Jang, M., Lee, M., Lee, J., Song, K., Lee, Y., Choi, K.Y., Robinson, D.G., and Hwang, I. (2013). Recruitment of Arf1- GDP to Golgi by Glo3p-type ArfGAPs is crucial for golgi maintenance and plant growth. Plant Physiol. 161, 676-691.   DOI
2 Montesinos, J.C., Pastor-Cantizano, N., Robinson, D.G., Marcote, M.J., and Aniento, F. (2014). Arabidopsis p24delta5 and p24delta9 facilitate Coat Protein I-dependent transport of the K/HDEL receptor ERD2 from the Golgi to the endoplasmic reticulum. Plant J. 80, 1014-1030.   DOI   ScienceOn
3 Nebenführ, A., Frohlick, J.A., and Staehelin, L.A. (2000). Redistribution of Golgi stacks and other organelles during mitosis and cytokinesis in plant cells. Plant Physiol. 124, 135-151.   DOI
4 Nelson, B.K., Cai X., and Nebenführ A. (2007). A multi-color set of in vivo organelle markers for colocalization studies in Arabidopsis and other plants. Plant J. 51, 1126-1136.   DOI   ScienceOn
5 Nishihama, R., Soyano, T., Ishikawa, M., Araki, S., Tanaka, H., Asada, T., Irie, K., Ito, M., Terada, M., Banno, H., et al. (2002). Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87-99.   DOI   ScienceOn
6 Papanikou, E., and Glick, B.S. (2014). Golgi compartmentation and identity. Curr. Opin. Cell Biol. 29, 74-81.   DOI   ScienceOn
7 Paul, M.J., and Frigerio, L. (2007). Coated vesicles in plant cells. Semin. Cell Dev. Biol. 18, 471-478.   DOI   ScienceOn
8 Pimpl, P., Movafeghi, A., Coughlan, S., Denecke, J., Hillmer, S., and Robinson, D.G. (2000). In situ localization and in vitro induction of plant COPI-coated vesicles. Plant Cell 12, 2219-2236.   DOI
9 Ratcliff, F., Martin-Hernandez, A.M., and Baulcombe, D.C. (2001). Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25, 237-245.
10 Razi, M., Chan, E.Y., and Tooze, S.A. (2009). Early endosomes and endosomal coatomer are required for autophagy. J. Cell Biol. 185, 305-321.   DOI   ScienceOn
11 Reape, T.J., and McCabe, P.F. (2008). Apoptotic-like programmed cell death in plants. New Phytol. 180, 13-26.   DOI   ScienceOn
12 Reichardt, I., Stierhof, Y.-D., Mayer, U., Richter, S. Schwarz, H., Schumacher, K., and Jürgens, G. (2007). Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Curr. Biol. 17, 2047-2053.   DOI   ScienceOn
13 Reilly, B.A., Kraynack, B.A., VanRheenen, S.M., and Waters, M.G. (2001). Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Mol. Biol. Cell 12, 3783-3796.   DOI
14 Ritzenthaler, C., Nebenführ, A., Movafeghi, A., Stussi-Garaud, C., Behnia, L., Pimpl, P., Staehelin, L.A., and Robinson, D.G. (2002). Reevaluation of the effects of brefeldin A on plant cells using tobacco Bright Yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14, 237-261.   DOI
15 Ruiz, M.T., Voinnet, O., and Baulcombe, D.C. (1998). Initiation and maintenance of virus-induced gene silencing. Plant Cell 10, 937-946.   DOI   ScienceOn
16 Shin, K.D., Lee, H.N., and Chung, T. (2014). A revised assay for monitoring autophagic flux in Arabidopsis thaliana reveals involvement of AUTOPHAGY-RELATED9 in autophagy. Mol. Cells 37, 399-405.   DOI   ScienceOn
17 Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880-885.   DOI   ScienceOn
18 Song, J., Lee, M.H., Lee, G.J., Yoo, C.M., and Hwang, I. (2006). Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. Plant Cell 18, 2258-2274.   DOI   ScienceOn
19 Song, K., Jang, M., Kim, S.Y., Lee, G., Lee, G.J., Kim, D.H., Lee, Y., Cho, W., and Hwang, I. (2012). An A/ENTH domaincontaining protein functions as an adaptor for clathrin-coated vesicles on the growing cell plate in Arabidopsis root cells. Plant Physiol. 159, 1013-1025.   DOI
20 Staehelin, L.A., and Hepler, P.K. (1996). Cytokinesis in higher plants. Cell 84, 821-824.   DOI   ScienceOn
21 Urade, R. (2009). The endoplasmic reticulum stress signaling pathways in plants. Biofactors 35, 326-331.   DOI   ScienceOn
22 Van Damme, D., Coutuer, S., De Rycke, R., Bouget, F.Y., Inze, D., and Geelen, D. (2006). Somatic cytokinesis and pollen maturation in Arabidopsis depend on TPLATE, which has domains similar to coat proteins. Plant Cell 18, 3502-3518.   DOI   ScienceOn
23 Van Damme, D., Inze, D., and Russinova, E. (2008). Vesicle trafficking during somatic cytokinesis. Plant Physiol. 147, 1544-1552.   DOI   ScienceOn
24 Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., et al. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40, 428-438.   DOI   ScienceOn
25 Bassham, D.C. (2007). Plant autophagy-more than a starvation response. Curr. Opin. Plant Biol. 10, 587-593.   DOI   ScienceOn
26 Ahn, C.S., Han, J.A., Lee, H.S., Lee, S., and Pai, H.-S. (2011). The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23, 185-209.   DOI   ScienceOn
27 Avila-Ospina, L., Moison, M., Yoshimoto, K., and Masclaux- Daubresse, C. (2014). Autophagy, plant senescence, and nutrient recycling. J. Exp. Bot. 65, 3799-3811.   DOI   ScienceOn
28 Assaad, F.F. (2001). Plant cytokinesis. Exploring the links. Plant Physiol. 126, 509-516.   DOI   ScienceOn
29 Bassham, D.C., Brandizzi, F., Otegui, M.S., and Sanderfoot, A.A. (2008). The secretory system of Arabidopsis. The Arabidopsis Book 6, e0116   DOI
30 Watanabe, N., and Lam, E. (2008). BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J. Biol. Chem. 283, 3200-3210.   DOI   ScienceOn
31 Whitney, J.A., Gomez, M., Sheff, D., Kreis, T.E., and Mellman, I. (1995). Cytoplasmic coat proteins involved in endosome function. Cell 83, 703-713.   DOI   ScienceOn
32 Xiong, Y., Contento, A.L., and Bassham, D.C. (2005). AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J. 42, 535-546.   DOI   ScienceOn
33 Yasuhara, H. (2005). Caffeine inhibits callose deposition in the cell plate and the depolymerization of microtubules in the central region of the phragmoplast. Plant Cell Physiol. 46, 1083-1092.   DOI   ScienceOn
34 Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., and Shirasua, K. (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914-2927.   DOI   ScienceOn
35 Yu, X., Breitman, M., and Goldberg, J. (2012). A structure-based mechanism for Arf1-dependent recruitment of coatomer to membranes. Cell 148, 530-542.   DOI   ScienceOn
36 Zerangue, N., Malan, M.J., Fried, S.R., Dazin, P.F., Jan, Y.N., Jan, L.Y., and Schwappach, B. (2001). Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 2431-2436.   DOI   ScienceOn
37 Burch-Smith, T.M., Schiff, M., Liu, Y., and Dinesh-Kumar, S.P. (2006). Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 142, 21-27.   DOI   ScienceOn
38 Beck, R., Rawet, M., Wieland, F.T., and Cassel, D. (2009). The COPI system: molecular mechanisms and function. FEBS Lett. 583, 2701-2709.   DOI   ScienceOn
39 Berry, D.L., and Baehrecke, E.H. (2007). Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137-1148.   DOI   ScienceOn
40 Boutté, Y., Frescatada-Rosa, M., Men, S., Chow, C.M., Ebine, K., Gustavsson, A., Johansson, L., Ueda, T., Moore, I., Jürgens, G., et al. (2009). Endocytosis restricts Arabidopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J. 29, 546-558.
41 Couchy, I., Bolte, S., Crosnier, M.T., Brown, S., and Satiat- Jeunemaitre, B. (2003). Identification and localization of a beta-COP-like protein involved in the morphodynamics of the plant Golgi apparatus. J. Exp. Bot. 54, 2053-2063.   DOI   ScienceOn
42 Coutinho, P., Parsons, M.J., Thomas, K.A., Hirst, E.M., Saude, L., Campos, I., Williams, P.H., and Stemple, D.L. (2004). Differential requirements for COPI transport during vertebrate early development. Dev. Cell 7, 547-558.   DOI   ScienceOn
43 Darenfed, H., and Mandato, C.A. (2005). Wound-induced contractile ring: a model for cytokinesis. Biochem. Cell Biol. 83, 711-720.   DOI   ScienceOn
44 Day, K.J., Staehelin, L.A., and Glick, B.S. (2013). A three-stage model of Golgi structure and function. Histochem. Cell. Biol. 140, 239-249.   DOI   ScienceOn
45 Denton, D., Shravage, B., Simin, R., Mills, K., Berry, D.L., Baehrecke, E.H., and Kumar, S. (2009). Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 19, 1741-1746.   DOI   ScienceOn
46 Faso, C., Boulaflous, A., and Brandizzi, F. (2009). The plant Golgi apparatus:last 10 years of answered and open questions. FEBS Lett. 583, 3752-3757.   DOI   ScienceOn
47 Dhonukshe, P., Baluska, F., Schlicht, M., Hlavacka, A., Samaj, J., Friml, J., and Gadella, T.W. Jr. (2006). Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell 10, 137-150.   DOI   ScienceOn
48 Donaldson, J.G., Finazzi, D., and Klausner, R.D. (1992). Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360, 350-352.   DOI   ScienceOn
49 Donohoe, B.S., Kang, B.H., and Staehelin, L.A. (2007). Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc. Natl. Acad. Sci. USA 104, 163-168.   DOI   ScienceOn
50 Frigerio, L., Hinz, G., and Robinson, D.G. (2008). Multiple vacuoles in plant cells:rule or exception? Traffic 9, 1564-1570.   DOI   ScienceOn
51 Gao, C., Yu, C.K., Qu, S., San, M.W., Li, K.Y., Lo, S.W., and Jiang, L. (2012). The Golgi-localized Arabidopsis endomembrane protein12 contains both endoplasmic reticulum export and Golgi retention signals at its C terminus. Plant Cell 24, 2086-2104.   DOI   ScienceOn
52 Gao, C., Cai, Y., Wang, Y., Kang, B.H., Aniento, F., Robinson, D.G., and Jiang, L. (2014). Retention mechanisms for ER and Golgi membrane proteins. Trends Plant Sci. 19, 508-515.   DOI   ScienceOn
53 Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493-501.   DOI   ScienceOn
54 Guo, Q., Vasile, E., and Krieger, M. (1994). Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon-COP. J. Cell Biol. 125, 1213-1224.   DOI   ScienceOn
55 Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., and Jurgens, G. (2003). The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219-230.   DOI   ScienceOn
56 Gu, F., Aniento, F., Parton, R.G., and Gruenberg, J. (1997). Functional dissection of COP-I subunits in the biogenesis of multivesicular endosomes. J. Cell Biol. 139, 1183-1195.   DOI
57 Gunning, B.E., and Wick, S.M. (1985). Preprophase bands, phragmoplasts, and spatial control of cytokinesis. J. Cell Sci. 2, 157-179.
58 Hanaoka, H., Noda T., Shirano, Y., Kato T., Hayashi H., Shibata D., Tabata S., and Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181-1193.   DOI   ScienceOn
59 Hara-Kuge, S., Kuge, O., Orci, L., Amherdt, M., Ravazzola, M., Wieland, F.T., and Rothman, J.E. (1994). En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J. Cell Biol. 124, 883-892.   DOI
60 Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., Jorgensen, L.B., Jones, J.D., Mundy, J., and Petersen, M. (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773-783.   DOI   ScienceOn
61 Hofius, D., Munch, D., Bressendorff, S., Mundy, J., and Petersen, M. (2011). Role of autophagy in disease resistance and hypersensitive response-associated cell death. Cell Death Differ. 18, 1257-1262.   DOI   ScienceOn
62 Jackson, L.P., Lewis, M., Kent, H.M., Edeling, M.A., Evans, P.R., Duden, R., and Owen, D.J. (2012). Molecular basis for recognition of dilysine trafficking motifs by COPI. Dev. Cell 23, 1255-1262.   DOI   ScienceOn
63 Huotari, J., and Helenius, A. (2011). Endosome maturation. EMBO J. 30, 3481-3500.   DOI   ScienceOn
64 Ito, E., Fujimoto, M., Ebine, K., Uemura, T., Ueda, T., and Nakano, A. (2012). Dynamic behavior of clathrin in Arabidopsis thaliana unveiled by live imaging. Plant J. 69, 204-216.   DOI   ScienceOn
65 Jackson, L.P. (2014). Structure and mechanism of COPI vesicle biogenesis. Curr. Opin. Cell Biol. 29, 67-73.   DOI
66 Jurgens, G. (2004). Membrane trafficking in plants. Annu. Rev. Cell Dev. Biol. 20, 481-504.   DOI   ScienceOn
67 Jurgens, G. (2005a). Cytokinesis in higher plants. Annu. Rev. Plant. Biol. 56, 281-299.   DOI   ScienceOn
68 Jurgens, G. (2005b). Plant cytokinesis:fission by fusion. Trends Cell Biol. 15, 277-283.   DOI   ScienceOn
69 Kang, Y.W., Lee, J.Y., Jeon, Y., Cheong, G.W., Kim, M., and Pai, H.-S. (2010). In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana. Plant Mol. Biol. 72, 569-583.   DOI   ScienceOn
70 Kang, Y.W., Jeon, Y., and Pai, H.-S. (2012). Characterization of cell death induced by NbBPS1 silencing in Nicotiana benthamiana. Mol. Cells 34, 185-191.   DOI
71 Kim, M., Lim, J.H., Ahn, C.S., Park, K., Kim, G.T., Kim, W.T., and Pai, H.-S. (2006). Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18, 2341-2355.   DOI   ScienceOn
72 Lee, M.C.S., Miller, E.A., Goldberg, J., Orci, L., and Schekman, R. (2004). Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87-123.   DOI   ScienceOn
73 Kitazawa, D., Yamaguchi, M., Mori, H., and Inoue, Y.H. (2012). COPI-mediated membrane trafficking is required for cytokinesis in Drosophila male meiotic divisions. J. Cell Sci. 125, 3649-3660.   DOI   ScienceOn
74 Kwon, S.I., Cho, H.J., Jung, J.H., Yoshimoto, K., Shirasu, K., and Park, O.K. (2010). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J. 64, 151-164.
75 Lam, E., Kato, N., and Lawton, M. (2001). Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848-853.   DOI   ScienceOn
76 Lee, J.Y., Sarowar, S., Kim, H.S., Kim, H., Hwang, I., Kim, Y.J., and Pai, H.-S. (2013). Silencing of Nicotiana benthamiana Neuroblastoma-Amplified Gene causes ER stress and cell death. BMC Plant Biol. 13, 69.   DOI   ScienceOn
77 Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567-577.   DOI   ScienceOn
78 Lum, J.J., DeBerardinis, R.J., and Thompson, C.B. (2005). Autophagy in metazoans:cell survival in the land of plenty. Nat. Rev. Mol. Cell Biol. 6, 439-448.   DOI   ScienceOn
79 McFarlane, H.E., Watanabe, Y., Yang, W., Huang, Y., Ohlrogge, J., and Samuels, A.L. (2014). Golgi- and trans-Golgi networkmediated vesicle trafficking is required for wax secretion from epidermal cells. Plant Physiol. 164, 1250-1260.   DOI   ScienceOn
80 McMichael, C.M., and Bednarek, S.Y. (2013). Cytoskeletal and membrane dynamics during higher plant cytokinesis. New Phytol. 197, 1039-1057.   DOI   ScienceOn