• Title/Summary/Keyword: systems approach method

Search Result 3,708, Processing Time 0.036 seconds

Collection of dynamical systems with dimensional reduction as a multiscale method of modelling for mechanics of materials

  • Kaczmarek, Jaroslaw
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-22
    • /
    • 2010
  • In this paper one introduces a method of multiscale modelling called collection of dynamical systems with dimensional reduction. The method is suggested to be an appropriate approach to theoretical modelling of phenomena in mechanics of materials having in mind especially dynamics of processes. Within this method one formalizes scale of averaging of processes during modelling. To this end a collection of dynamical systems is distinguished within an elementary dynamical system. One introduces a dimensional reduction procedure which is designed to be a method of transition between various scales. In order to consider continuum models as obtained by means of the dimensional reduction one introduces continuum with finite-dimensional fields. Owing to geometrical elements associated with the elementary dynamical system we can formalize scale of averaging within continuum mechanics approach. In general presented here approach is viewed as a continuation of the rational mechanics.

A new approach to robustness bounds using lyapunov stability concept

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.543-547
    • /
    • 1994
  • In this paper, the new approach and technique are introduced and derived from the original Lyapunov direct method which is used to decide the stability of system conveniently. This proposed technique modifies the formal concepts of the sufficient conditions of Lyapunov stability and is able to generate the methods for the robust design of control systems. Also, it applies to the dynamic systems with bounded perturbations and the results of the computer program using the new concept are compared with those of previous research papers and conventional Lyapunov direct method. It is possible to recognize the practical improvements of the estimation of robustness bounds of the systems.

  • PDF

Analytical Design of Multiloop PI Controller for Disturbance Rejection in Multivariable Processes (다변수 공정에서의 외란제거를 위한 다중루프 PI 제어기의 해석적 설계)

  • Vu Truong Nguyen Luan;Lee Ji-Tae;Lee Moon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.505-508
    • /
    • 2006
  • This paper presents a new analytical approach for designing multiloop PI controllers for disturbance rejection in multivariable processes with time delay. The proposed method is based on IMC-PID design approach. To overcome a sluggish load response by dominant pole in the process, the IMC filter is modified to compensate the dominant pole effect. Based on the modified IMC filter, an analytical tuning rule for multiloop PI controller is driven by extending the generalized IMC-PID method for single input/single output (SISO) systems [1] to multi input/multi output (MIMO) systems. Simulation results show that the proposed method gives a satisfactory load performance as well as servo performance in the multiloop system.

Gaussian Approximation of Stochastic Lanchester Model for Heterogeneous Forces (혼합 군에 대한 확률적 란체스터 모형의 정규근사)

  • Park, Donghyun;Kim, Donghyun;Moon, Hyungil;Shin, Hayong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.2
    • /
    • pp.86-95
    • /
    • 2016
  • We propose a new approach to the stochastic version of Lanchester model. Commonly used approach to stochastic Lanchester model is through the Markov-chain method. The Markov-chain approach, however, is not appropriate to high dimensional heterogeneous force case because of large computational cost. In this paper, we propose an approximation method of stochastic Lanchester model. By matching the first and the second moments, the distribution of each unit strength can be approximated with multivariate normal distribution. We evaluate an approximation of discrete Markov-chain model by measuring Kullback-Leibler divergence. We confirmed high accuracy of approximation method, and also the accuracy and low computational cost are maintained under high dimensional heterogeneous force case.

Energy based approach for solving conservative nonlinear systems

  • Bayat, M.;Pakar, I.;Cao, M.S.
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2017
  • This paper concerns two new analytical approaches for solving high nonlinear vibration equations. Energy Balance method and Hamiltonian Approach are presented and successfully applied for nonlinear vibration equations. In these approaches, there is no need to use small parameters to solve and only with one iteration, high accurate results are reached. Numerical procedures are also presented to compare the results of analytical and numerical ones. It has been established that, the proposed approaches are in good agreement with numerical solutions.

Probabilistic Background Subtraction in a Video-based Recognition System

  • Lee, Hee-Sung;Hong, Sung-Jun;Kim, Eun-Tai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.782-804
    • /
    • 2011
  • In video-based recognition systems, stationary cameras are used to monitor an area of interest. These systems focus on a segmentation of the foreground in the video stream and the recognition of the events occurring in that area. The usual approach to discriminating the foreground from the video sequence is background subtraction. This paper presents a novel background subtraction method based on a probabilistic approach. We represent the posterior probability of the foreground based on the current image and all past images and derive an updated method. Furthermore, we present an efficient fusion method for the color and edge information in order to overcome the difficulties of existing background subtraction methods that use only color information. The suggested method is applied to synthetic data and real video streams, and its robust performance is demonstrated through experimentation.

연결강도분석을 이용한 통합된 부도예측용 신경망모형

  • Lee Woongkyu;Lim Young Ha
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2002.11a
    • /
    • pp.289-312
    • /
    • 2002
  • This study suggests the Link weight analysis approach to choose input variables and an integrated model to make more accurate bankruptcy prediction model. the Link weight analysis approach is a method to choose input variables to analyze each input node's link weight which is the absolute value of link weight between an input nodes and a hidden layer. There are the weak-linked neurons elimination method, the strong-linked neurons selection method in the link weight analysis approach. The Integrated Model is a combined type adapting Bagging method that uses the average value of the four models, the optimal weak-linked-neurons elimination method, optimal strong-linked neurons selection method, decision-making tree model, and MDA. As a result, the methods suggested in this study - the optimal strong-linked neurons selection method, the optimal weak-linked neurons elimination method, and the integrated model - show much higher accuracy than MDA and decision making tree model. Especially the integrated model shows much higher accuracy than MDA and decision making tree model and shows slightly higher accuracy than the optimal weak-linked neurons elimination method and the optimal strong-linked neurons selection method.

  • PDF

The extremal shift method for the feedback optimal game-control problems

  • Park, Young-Sang;Andrew N. Krasovskii
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.379-379
    • /
    • 1998
  • The report presents an approach to constructing or control algorithms for finite dimensional dynamical systems under the deficit of information about dynamical disturbances. The approach is based on the constructions of the extremal shift strategy of the differential game theory.

  • PDF

Identification of Nonlinear Systems based on Dynamic Recurrent Neural Networks (동적 귀환 신경망에 의한 비선형 시스템의 동정)

  • 이상환;김대준;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.413-416
    • /
    • 1997
  • Recently, dynamic recurrent neural networks(DRNN) for identification of nonlinear dynamic systems have been researched extensively. In general, dynamic backpropagation was used to adjust the weights of neural networks. But, this method requires many complex calculations and has the possibility of falling into a local minimum. So, we propose a new approach to identify nonlinear dynamic systems using DRNN. In order to adjust the weights of neurons, we use evolution strategies, which is a method used to solve an optimal problem having many local minimums. DRNN trained by evolution strategies with mutation as the main operator can act as a plant emulator. And the fitness function of evolution strategies is based on the difference of the plant's outputs and DRNN's outputs. Thus, this new approach at identifying nonlinear dynamic system, when applied to the simulation of a two-link robot manipulator, demonstrates the performance and efficiency of this proposed approach.

  • PDF

A novel approximate solution for nonlinear problems of vibratory systems

  • Edalati, Seyyed A.;Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1039-1049
    • /
    • 2016
  • In this research, an approximate analytical solution has been presented for nonlinear problems of vibratory systems in mechanical engineering. The new method is called Variational Approach (VA) which is applied in two different high nonlinear cases. It has been shown that the presented approach leads us to an accurate approximate analytical solution. The results of variational approach are compared with numerical solutions. The full procedure of the numerical solution is also presented. The results are shown that the variatioanl approach can be an efficient and practical mathematical tool in field of nonlinear vibration.