• Title/Summary/Keyword: systemic immunity

Search Result 74, Processing Time 0.026 seconds

경구투여 백신 후보물질로서의 Helicobacter pylori 외막 단백질의 조사

  • 박형배;최태부
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1997
  • Helicobacter pylori is a spiral-shaped, microaerophilic human gastric pathogen causing chronic-active gastritis in association with duodenal ulcer and gastric cancer. To investigate the possibility of H. pylori outer membrane proteins (OMPS) as the oral vaccine antigens, sarcosine-insoluble outer membrane fraction has been prepared from H. pylori NCTC 11637. The major OMPs having apparent molecular masses of 62 kDa, 54 kDa and 33 kDa were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which were identified as urease B subunit (UreB), heat shock protein (Hsp54 kDa) and urease A subunit (UreA), respectively. Minor protein bands of 57 kDa, 52 kDa, 40 kDa, 36 kDa and 31 kDa were also observed. The antigenicity of H. pylori OMPs and antigenic cross-reactivity among the strains were determined by immunoblot analysis using anti-H. pylori OMPs antisera or intestinal lavage solutions. The results showed that UreB, Hsp54 kDa, UreA and 40 kDa proteins vigorously stimulated mucosal immune response rather than systemic immunity. From this results, these proteins seemed to be useful as the antigen candidates for the oral vaccine. The immunoblotting results with surface proteins from eight isolated H. pylori strains were similar to that of H. pylori NCTC 11637. The IgA which had been arised from oral administration of H. pylori OMPs, was able to bind H. pylori whole-cells.

  • PDF

Novel Systemic Therapies for Advanced Gastric Cancer

  • Kim, Hong Jun;Oh, Sang Cheul
    • Journal of Gastric Cancer
    • /
    • v.18 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Gastric cancer (GC) is the second leading cause of cancer mortality and the fourth most commonly diagnosed malignant diseases. While continued efforts have been focused on GC treatment, the introduction of trastuzumab marked the beginning of a new era of target-specific treatments. Considering the diversity of mutations in GC, satisfactory results obtained from various target-specific therapies were expected, yet most of them were unsuccessful in controlled clinical trials. There are several possible reasons underlying the failures, including the absence of patient selection depending on validated predictive biomarkers, the inappropriate combination of drugs, and tumor heterogeneity. In contrast to targeted agents, immuno-oncologic agents are designed to regulate and boost immunity, are not target-specific, and may overcome tumor heterogeneity. With the successful establishment of predictive biomarkers, including Epstein-Barr virus pattern, microsatellite instability status, and programmed death-ligand 1 (PD-L1) expression, as well as ideal combination regimens, a new frontier in the immuno-oncology of GC treatment is on the horizon. Since the field of immuno-oncology has witnessed innovative, practice-changing successes in other cancer types, several trials on GC are ongoing. Among immuno-oncologic therapies, immune checkpoint inhibitors are the mainstay of clinical trials performed on GC. In this article, we review target-specific agents currently used in clinics or are undergoing clinical trials, and highlight the future clinical application of immuno-oncologic agents in inoperable GC.

Evaluation of systemic and mucosal immune responses in mice administered with recombinant Salmonella Typhimurium expressing IutA protein

  • Oh, In-Gyeong;Choi, Minsu;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.3
    • /
    • pp.163-167
    • /
    • 2013
  • Avian pathogenic Escherichia coli (APEC) are known to cause extraintestinal disease in poultry, leading to substantial losses in the industry. IutA, iron-regulated aerobactin receptor is firmly associated with APEC. To assess the potential of IutA to induce protective immune responses, attenuated Salmonella Typhimurium strain expressing IutA was constructed and administered orally to BALB/c mice. The IutA-specific immune responses were measured with sera, vaginal and fecal samples by an enzyme-linked immunosorbent assay. We found that the Salmonella-IutA vaccine induced significantly higher immune responses as compared to the control inoculated with the attenuated S. Typhimurium containing the plasmid only. The IutA-specific immune responses were increased by second immunization at third week after initial immunization, whereas triple immunization induced lower immune responses than those induced by the double immunization. The Salmonella-IutA vaccine induced a nature of immunity biased to the Th1-type, as judged by the ratio of IutA-specific IgG isotypes (IgG2a/IgG1). Overall, these results suggest that the Salmonella-IutA vaccine appear to be suitable candidate for a vaccine against APEC.

Recombinant zoster vaccine (Shingrix®): a new option for the prevention of herpes zoster and postherpetic neuralgia

  • Singh, Grisuna;Song, Sejin;Choi, Eunjoo;Lee, Pyung-Bok;Nahm, Francis Sahngun
    • The Korean Journal of Pain
    • /
    • v.33 no.3
    • /
    • pp.201-207
    • /
    • 2020
  • Postherpetic neuralgia (PHN) is a challenging condition for pain management specialists. The prevention of herpes zoster (HZ) and subsequent PHN in individuals aged 50 years and older, via the development of new vaccines, is an ongoing research project. The live zoster vaccine (LZV, Zostavax®) was the first proof of concept that vaccination could prevent HZ, but LZV cannot be used in various immunecompromised patients. This led to the development of a new non-live recombinant zoster vaccine (RZV, Shingrix®). This RZV has shown promising results in many clinical trials, with high reactogenicity and similar systemic adverse effects compared to those of LZV. The National Advisory Committee on Immunization has recommended LZV as a standard vaccine for HZ prevention in adults ≥ 50 years of age, but no studies directly comparing the safety and efficacy of RZV and LZV vaccines have been conducted. This article reviews the brief history, efficacy, and safety of the two vaccines and discusses the advantage of RZV over LZV based on the available literature.

Oral and Human Microbiome Research

  • Chung, Sung-Kyun
    • Journal of dental hygiene science
    • /
    • v.19 no.2
    • /
    • pp.77-85
    • /
    • 2019
  • In the past gut microbiome has been the main focus of microbiome research. Studies about the microbiome inside oral cavities and other organs are underway. Studies about the relationship between noninfectious diseases and periodontal diseases, and the negative effects of harmful oral microbes on systemic health have been published in the recent past. A lot of attention is being paid towards fostering a healthy oral microbial ecosystem. This study aimed to understand the roles and effects of the microbiome inside the human body can potentially help cure various diseases including inflammatory bowel diseases with no known cure such as Crohn's disease, atopic dermatitis, obesity, cancer, diabetes, brain diseases and oral diseases. The present study examined technological trends in the correlation between the human microbiome and diseases in the human body, interactions between the human body's immunity, the metabolic system, and the microbiome, and research trends in other countries. While it has been proven that human microbiome is closely correlated with human diseases, most studies are still in the early stage of trying to compare the composition of microbiomes between health and patient groups. Since the oral environment is a dynamic environment that changes due to not only food intake but also other external factors such as lifestyle, hygiene, and drug intake, it is necessary to continue in-depth research on the microbiome composition characteristics to understand the complex functions of oral microorganisms. Analyzing the oral microbiome using computational technology may aid in disease diagnosis and prevention.

Monkeypox and Its Recent OUTBREAKS; A Systemic Review

  • Zain Ul, Abedien;Kainat, Gul;Maheen, Shafiq;Khizar, Rahman
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.457-464
    • /
    • 2022
  • A public health concern emerging from a zoonotic disease. Monkeypox is caused by the orthopoxvirus specie Monkeypox virus (MPXV). Monkeypox was identified as the most common orthopoxvirus infection in humans following the eradication of smallpox. Monkeypox has a similar clinical presentation to smallpox. The MPXV is now considered a high-threat pathogen that causes a serious public-health problem. The continuous spread of Monkeypox virus from West Africa to all other places around the world throughout 2018 to 2022, have raised concerns that MPXV could have emerged to acquire the immunological and ecological niche vacated by smallpox virus. This review highlights the current knowledge about Monkeypox evolution, infection biology, and epidemiology around the world since from 1970 to 2022, with a focus on the human, viral, and cellular factors that influence virus emergence, infection, spread, and maintenance in nature. This paper also discusses the current therapeutic options for Monkeypox treatment and control. Under the right conditions, with limited smallpox vaccination and very little orthopoxvirus immunity in some areas of the world, MPXV could become a more efficient human pathogen. Finally, the review identified knowledge gaps, particularly in terms of identifying a definitive reservoir host for monkeypox and proposes future research endeavors to address the unanswered questions.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Osteoclasts in the Inflammatory Arthritis: Implications for Pathologic Osteolysis

  • Youn-Kwan Jung;Young-Mo Kang;Seungwoo Han
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.13
    • /
    • 2019
  • The enhanced differentiation and activation of osteoclasts (OCs) in the inflammatory arthritis such as rheumatoid arthritis (RA) and gout causes not only local bone erosion, but also systemic osteoporosis, leading to functional disabilities and morbidity. The induction and amplification of NFATc1, a master regulator of OC differentiation, is mainly regulated by receptor activator of NF-κB (RANK) ligand-RANK and calcium signaling which are amplified in the inflammatory milieu, as well as by inflammatory cytokines such as TNFα, IL-1β and IL-6. Moreover, the predominance of CD4+ T cell subsets, which varies depending on the condition of inflammatory diseases, can determine the fate of OC differentiation. Anti-citrullinated peptide antibodies which are critical in the pathogenesis of RA can bind to the citrullinated vimentin on the surface of OC precursors, and in turn promote OC differentiation and function via IL-8. In addition to adaptive immunity, the activation of innate immune system including the nucleotide oligomerization domain leucine rich repeat with a pyrin domain 3 inflammasome and TLRs can regulate OC maturation. The emerging perspectives about the diverse and close interactions between the immune cells and OCs in inflammatory milieu can have a significant impact on the future direction of drug development.

Immunocell Therapy for Lung Cancer: Dendritic Cell Based Adjuvant Therapy in Mouse Lung Cancer Model (폐암의 면역세포 치료: 동물 모델에서 수지상 세포를 이용한 Adjuvant Therapy 가능성 연구)

  • Lee, Seog-Jae;Kim, Myung-Joo;In, So-Hee;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • Background: The anti-tumor therapeutic effect of autologous tumor cell lysate pulseddendritic cells (DCs) was studied for non-immunogenic and immune suppressive lung cancer model. To test the possibility as an adjuvant therapy, minimal residual disease model was considered in mouse in vivo experiments. Methods: Syngeneic 3LL lung cancer cells were inoculated intravenously into the C57BL/6 mouse. Autologous tumor cell (3LL) or allogeneic leukemia cell (WEHI-3) lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, tumor formation in the lung and the tumor-specific systemic immunity were observed. Tumor-specific lymphocyte proliferation and the IFN-${\gamma}$ secretion were analyzed for the immune monitoring. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with tumor cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor formation was suppressed in 3LL tumor cell lysate pulsed-DC treated group, while 3LL-specific immune stimulation was minimum. WEHI-3-specific immune stimulation occurred in WEHI-3 lysate-pulsed DC treated group, which had no correlation with tumor regression. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs as an adjuvant therapy for minimal residual disease state of lung cancer. The significance of immune modulation in DC therapy including the possible involvement of NK cell as well as antigen-specific cytotoxic T cell activity induction was discussed.

Immune responses th the vaccines of viral systemic necrosis of carp virus (VSNCV) of comom carp, Cyprinus carpio L. (잉어류 바이러스성전신괴사증바이러스 (VSNCV) 백신 투여에 대한 잉어의 면역반응)

  • Jo, Mi-Yeong;Son, Sang-Gyu;Kim, Lee-Cheong;Kim, Jin-U;O, Myeong-Ju;Jeong, Seong-Ju;Park, Su-Il
    • Journal of fish pathology
    • /
    • v.16 no.3
    • /
    • pp.175-181
    • /
    • 2003
  • VSNC is a viral disease causing significant economic losses in cultured carp Ciprinus carpio L. in Korea. Carps were immunized with prepared vaccines against VSNCV and examined specific and nonspecific immune responses. Carps were injected by O.2㎖ of formalin-killed vaccine (FKV), heat-killed vaccine (HKV) or E-MEM, respectively and dealt with boost with same way two weeks later. The lysozyme activity of serum and chemiluminescent reponses of head-kidney leucocytes showed increased responses during 2-7 days post-first injection (pfi) and post-boost (pb) in the vaccinated fish, and then decreased to the level of control. As measured by ELISA, vaccinated groups showed a significant increase in VSNCV-specific serum antibodies between 2 weeks pfi and 6weeks pb with a peak at 2 weeks pb. Results of the virus challenge showed that the fish vaccinated with FKV have induced protective immunity, while HKV injection hardly provided protection.