• Title/Summary/Keyword: system of difference equations

Search Result 362, Processing Time 0.028 seconds

The Effect of Flow Rate into Room by Natural Convection in Air Conditioner Duct (공조기 덕트 내의 자연대류가 실내 유입유량에 미치는 영향)

  • 공태우;정한식;정효민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.160-166
    • /
    • 2001
  • A numerical analysis has been performed for natural convection in an air conditioner duct system. The governing equations were solved a finite volume method using a SIMPLE algorithm. In the calculation mode of duct, the room temperature was preserved at $25.0^{\circ}C$ and duct wall temperature had a temperature of 15, 20.0, 22.5, 23.75, 26.25, 27.5 30 and $35^{\circ}C$. The results of velocity vectors and contours have been represented for various parameters. Based on the numerical data, the relationships between temperature difference and flow rate into room was represented. In the case of $T_\gamma>T_\omega$, the equation for temperature difference and flow rate was $Q=0.0285\triangleT^0.4005$, and in the case of $T_\gamma>T_\omega$, the equation was $Q=0.0099\triangleT^0.4752$. The duct system has an important relation to room temperature and duct wall temperature.

  • PDF

A Performance Enhanced UHF RFID System with Modified I/Q Diversity Receiver

  • Jeon, Ki-Yong;Yoon, Chang-Seok;Cho, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.751-756
    • /
    • 2008
  • In this paper, we propose a modified I/Q diversity scheme receiver of UHF RFID reader system. The modified I/Q diversity receiver is more robust than the conventional homodyne receiver in the wireless noisy, fading channel and phase noise environments by making use of additional axes. In particular, it is shown that the closer the phase difference ${\theta}(t)$ between the reader and the tag to ${\pi}/4$, the larger performance improvement we can get. The performance of the proposed receiver is verified by equations and is demonstrated by the computer simulation for various difference ${\theta}(t)$ cases.

Dynamic Analysis of Rotary Compressor with Rotor Misaligment (축어긋남을 갖는 로터리 컴프레서의 동적해석)

  • 정의봉;김태학
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.82-87
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. The system is considered as a coupled problem of flexible rotor and the journal bearings. Bearing reaction force is calculated from pressure of oil film using Reynolds equations in journal bearings. Pressure distribution in journal bearing is analyzed by finite difference method. The dynamic response of rotor and bearing characteristic are discussed when rotary compressor has a relative misalignment.

  • PDF

STABILITY ANALYSIS OF COMPRESSIBLE BOUNDARY LAYER IN CURVILINEAR COORDINATE SYSTEM USING NONLINEAR PSE (비선형 PSE를 이용한 압축성 경계층의 안정성 해석)

  • Gao, B.;Park, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.134-140
    • /
    • 2007
  • Nonlinear parabolized stability equations for compressible flow in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Blasius flow is tested. The results of the present computation show good agreement with DNS data. Nonlinear interaction can make the T-S fundamental wave more unstable and the onset of its amplitude decay is shifted downstream relative to linear case. For nonlinear calculations, rather small difference in initial amplitude can produce large change during nonlinear region. Compressible secondary instability at Mach number 1.6 is also simulated and showed that 1.1% initial amplitude for primary mode is enough to trigger the secondary growth.

  • PDF

Finite Difference Simulation of Two-dimensional Waves Generated by Numerical Wavemaker (수치조파기에 의해 생성되는 2차원 파도의 유한차분 시뮬레이션)

  • Lee, Young-Gill;Kim, Kang-Sin
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.198-203
    • /
    • 2003
  • Unsteady two-dimensional nonlinear waves which are generated by the numerical wavemaker of plunging type are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Marker-density function method is adopted for the simulation of wave breaking phenomena, and the computations are carried out with various wave amplitudes and two section shapes of wavemaker. The computation results are compared with other existing computational and experimental results, and the agreement between the experimental data and the computation results is good.

  • PDF

Development of 3-Dimensional Simulator for a Biped Robot (이족 보행로봇의 3차원 모의실험기 개발)

  • Noh, Kyung-Kon;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Hydrodynamic forces of impeller shroud and wear-ring seal on centrifugal pump (고성능 원심펌프에서 임펠러 시라우드 및 마모 시일의 유체가진력 해석)

  • Ha, Tae-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.102-110
    • /
    • 1998
  • The analysis of lateral hydrodynamic forces in the leakage path between a shrouded pump impeller through wear-ring seal and its housing is presented. Governing equations are derived based on Bulk-flow and Hirs' turbulent lubrication model. By using a perturbation analysis and a numerical integration method, governing equations are solved to yield leakage and rotordynamic coefficients of force developed by the impeller shroud and wear-ring seal. The variation of rotordynamic coefficients of pump impeller shroud and wear-ring seal is analyzed as parameters of rotor speed, pressure difference, shroud clearance, wear-ring seal clearance, and circumferential velocity at the entrance of impeller shroud for a typical multi-stage centrifugal pump.

A Study of Conjugate Laminar Film Condensation on a Flat Plate (수평평판에서 복합 층류 막응축에 대한 연구)

  • Lee Euk-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.303-311
    • /
    • 2005
  • The problem of conjugate laminar film condensation of the pure saturated vapor in forced flow over a flat plate has been investigated as boundary layer solutions. A simple and efficient numerical method is proposed for its solution. The interfacial temperature is obtained as a root of 3rd order polynomial for laminar film condensation, and it is presented as a function of the conjugate parameter. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Jacob number, $Ja^{\ast}$, defined by an overall temperature difference, a property ratio R and the conjugate parameter ${\zeta}$. The approximate solutions thus obtained reveal the effects of the conjugate parameter.

Multi-Region Model of Solute Transport in Soil for the Preferential Flow (Preferential 흐름에 의한 토양내의 다영역 용질이동 모델)

  • 안병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.71-77
    • /
    • 2000
  • A multi-region model for solute transport through saturated soils has been developed to describe preferential flow. The model consists of numerous discrete pore groups, which are characterized by a discrete dispersion coefficient, flow velocity, and porosity . The hydraulic properties for each pore group are derived from a soil's hydraluic conductivity and soil water characteristic functions . Flow in pore group is described by the classical advection-disersion equation (ADE). An implict finite difference scheme was applied to the governing equation that results in a block-tridiagonal system of equations that is very efficient and allows the soil to be divided into any number of pore groups. The numerical technique is derived from methods used to solve coupled equations in fluid dynamics problems and can also be applied to the transport of interacting solutes. The results of the model are compared to the experimental data from published papers. This paper contributes on the characteristics of the method when applied to the parallel porosity model to describe preferential flow of solutes in soil.

  • PDF