• Title/Summary/Keyword: system dynamic behavior

Search Result 1,601, Processing Time 0.03 seconds

A Study on the Dynamic Behavior of Eddy Current Braking System for Korean High Speed Train (고속전철의 와전류 제동장치 동적 거동특성 연구)

  • 박찬경;최강윤;현승호;곽수태
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.147-154
    • /
    • 2001
  • Dynamic behavior of high speed train is very important because the high speed train should be safe and satisfied with the ride comfort. An eddy current brake system is mounted on trailer bogie and wheelset. The eddy current braking force longitudinally exerts on the articulated trailer bogie and the attraction force vertically exerts on the wheelset. Because a frame of eddy current brake system is flexible, these forces generate the vertical vibration at middle point of the frame. Also, the vibration change the vertical clearance between an electromagnet and top of rail which affect the magnitude of braking and attracting forces. Therefore, the dynamic behavior of the eddy current braking system must be predicted for design the dynamic characteristic of its mounting system when normally operate on rail which have irregularity. Vampire program is used for Prediction of the dynamic behavior of an eddy current braking system.

  • PDF

Analysis of Optimal Dynamic Absorbing System considering Human Behavior induced by Transmitted Force

  • Kim, Hyo-Jun;Choe, Eui-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.38-43
    • /
    • 2003
  • In this study, the optimal dynamic absorbing system for the gas operated HIF (high implusive force) device has been investigated. For this purpose, firstly, the dynamic behavior of human body induced by impulsive disturbances has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic absorbing system, the parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation in the actual operating condition.

Effects of a One-Way Clutch on the Nonlinear Dynamic Behavior of Spur Gear Pairs under Periodic Excitation

  • Cheon Gill-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.941-949
    • /
    • 2006
  • Nonlinear behavior analysis was used to verify whether a one-way clutch is effective for reducing the torsional vibration of a paired spur gear system under periodic excitation. The dynamic responses were studied over a wide frequency range by speed sweeping to check the nonlinear behavior using numerical integration. The gear system with a one-way clutch showed typical nonlinear behavior. The oscillating component of the dynamic transmission error was reduced over the entire frequency range compared to a system without a one-way clutch. The one-way clutch also eliminated unsteady continuous jump phenomena over multiple solution bands, and prevented double-side contact, even with very small backlash. Installing a one-way clutch on both sides of the gear system was more effective at mitigating the negative effects of external periodic excitation and various parameter changes than a conventional gear system without a one-way clutch.

An Experimental Investigation on the Dynamic Behavior of an Air Lubricated Tilting Pad Journal Bearing (공기윤활 틸팅패드 저어널 베어링의 동적거동에 관한 실험적 연구)

  • Hwang, Pyung;Kwon, Sung-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.325-330
    • /
    • 1999
  • The dynamic behavior analysis of air-lubricated tilting pad journal bearing which considers start-up, running and shutdown Process were performed. By carrying out the experiment of shaft vibration, measurement of the vibration amplitudes supported by air lubricated tilting pad bearing and analysis of the result, we found more accurate dynamic behavior of the system. There were many investigations in these bearings, but dynamic behavior of startup, shutdown and running process were lacked. By using the experimental data we found the accurate dynamic behavior of the system.

  • PDF

Emotional Behavior Decision Model Based on Linear Dynamic System for Intelligent Service Robots (지능형 서비스 로봇을 위한 선형 동적 시스템 기반의 감정 기반 행동 결정 모델)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.760-768
    • /
    • 2007
  • This paper introduces an emotional behavior decision model based on linear system for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of intelligent service robots and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear dynamic system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented a cyber robot and an emotional head robot using 3D character for verifying the performance of the proposed emotional behavior decision model.

A Study on System's Reliability Evaluation Using DFT Algorithm (동적 결함 트리 (Dynamic Fault Tree) 알고리즘을 이용한 시스템의 신뢰도 평가에 관한 연구)

  • 김진수;양성현;이기서
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.280-287
    • /
    • 1998
  • In this paper, Dynamic Fault Tree algorithm(DFT algorithm) is presented. This new algorithm provides a concise representation of dynamic fault tolerance system structure with redundancy, dynamic redundancy management and complex fault & error recovery techniques. And it allows the modeler to define a dynamic fault tree model with the relative advantages of both fault tree and Markov models that captures the system structure and dynamic behavior. This algorithm applies to TMR and Dual-Duplex systems with the dynamic behavior and show that this algorithm captured the dynamic behavior in these systems with fault & error recovery technique, sequence-dependent failures and the use dynamic spare. The DFT algorithm for solving the problems of the systems is more effective than the Markov and Fault tree analysis model.

  • PDF

Analysis of Optimal Dynamic Absorbing System Considering Human Behavior Induced by Transmitted Force (폭발 충격 발생기구의 인체전달 충격력 및 완충시스템 해석)

  • 김효준;양현석;박영필;류봉조;최의중;이성배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.64-69
    • /
    • 2002
  • In this study, the optimal dynamic isolation system for gas operated combat weapon has been investigated. For this purpose, firstly, the dynamic behavior of human induced by firing operations has been analyzed through a series of experimental works using the devised test setup. The characteristics of linear impulse has been compared under some conditions of support system. In order to design the optimal dynamic isolation system, parameter optimization process has been performed based on the simplified isolation system under constraints of moving displacement and transmitted force. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation.

Statistical Analysis of Initial Behavior of a Vertically-launched Missile from Surface Ship (수상함에서 발사된 수직 발사 유도탄 초기 거동의 통계적 해석)

  • Kim, Kyung-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.889-895
    • /
    • 2012
  • A vertical launching system(VLS) is a system for holding and firing missiles on surface ships. When a missile is launched in VLS, relative motion between canister and missile and drag force induced by wind can cause initial unstability of a missile. Thus dynamic analysis of initial behavior of vertically launched missile should be performed to prevent collision with any structure of a ship. In this study, dynamic analyses of initial behavior of vertically launched missile are performed using Monte-Carlo simulation, which relys on random sampling and probabilistic distribution of variables. Each parameter related with dynamic behavior of a missile is modeled with probability variables and Recurdyn, a commercial software for multi body dynamic analysis, is used to perform Monte-Carlo simulation. As a result, initial behavior of a missile is evaluated with respect to various performance indexes in a probabilistic sense and sensitivity of the each parameters is calculated.

Motivation Dynamics : System Dynamics Approach for Analyzing Dynamic Motivation Model Using VENSIM (모티베이션 다이내믹스 : VENSIM을 이용한 성취동기모형의 시스템 다이내믹스 분석)

  • 손태원;정한규
    • Korean System Dynamics Review
    • /
    • v.1 no.1
    • /
    • pp.57-79
    • /
    • 2000
  • Most model constructs in organization studies are descriptive in nature, and the conclusions relating to the model behavior over time are speculative. The usefulness of System Dynamics as a methodology for modeling and testing dynamic behavioral hypotheses in organizational behavioral studies is presented, and how to construct a System Dynamics model using simulation software(VENSIM) is shown, The well-know March and Simon motivation model is used to demonstrate the step by step application of System Dynamics to model of this type. The dynamic behavior of the model, both transient and steady state, is obtained, Even though the paper has focused on one model in the area of individual behavior, the approach is general and can be applied to other areas of organizational behavior as will. The usefulness of System Dynamics as a methodology for theory building is identified as well.

  • PDF

Emotional Engine Model based on Linear Dynamic Systems (선형 동적 시스템 기반의 감정 엔진 모델)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.213-215
    • /
    • 2007
  • This paper introduces an emotional behavior decision model for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of emotional model and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented the proposed emotional behavior decision model and verified its performance.

  • PDF