• Title/Summary/Keyword: system closure

Search Result 362, Processing Time 0.025 seconds

Simulation of anomalous Indian Summer Monsoon of 2002 with a Regional Climate Model

  • Singh, G.P.;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The Indian summer monsoon behaved in an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels shows that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF

Analysis of Seepage Behavior of Bottom Protection Layer by Filed Monitoring (계측관리를 통한 방조제 바닥보호공의 침투거동분석)

  • Kang, Byung-Yoon;Oh, Young-In;Kim, Ki-Nyeon;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.806-813
    • /
    • 2008
  • In this research, mainly research about the structural and functional stability of sea dyke with variation of seepage condition after final closure. The piezometric head (water head in embankment) monitoring system was installed at two representative final closure section. The dredged fine sand filling condition was evaluated by in-situ test results. Also, the numerical analysis was performed to determine the permeability of bottom protection layer filled with dredged fine sand by monitoring results. According to numerical back analysis results, the coefficient of permeability of bottom protection section of is $7.6{\times}10^{-6}$ m/sec. These results are noted that the bottom protection layer of sea dyke was strong and intensively filled with dredged sand. Also, based on the seepage analysis, the seepage flux of this sea dyke was calculated about $2.42m^3$/day/m which is 29% decreased value compare with adjacent sea dyke.

  • PDF

The Starting Behaviour of a Supersonic Ejector Equipped with a Converging-Diverging Diffuser (축소 팽창 디퓨저가 장착된 초음속 이젝터의 시동 특성)

  • Park GeunHong;Kim SeHoon;Jin JungKun;Kwon SeJin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.70-77
    • /
    • 2005
  • An axisymmetric supersonic ejector equipped with a converging-diverging diffuser was built and pressure at various locations along the ejector-diffuser system was recorded with emphasis on the supersonic starting of the secondary flow. In order to find the effects of the opening size of the secondary flow, a number of openings were used with a constant primary pressure. Supersonic starting was possible only for d/D, the ratio of the opening diameter and the diffuser throat diameter, less than 0.306. for larger values of d/D, the ejection begins at subsonic secondary flow condition. With the closure of the opening, the primary flow brings the normal shock downstream of the converging-diverging diffuser And the starting of the ejector continues even after the closure was removed.

Post Closure Long Term Safely of the Initial Container Failure Scenario for a Potential HLW Repository (고준위 방사성폐기물 처분장 불량 용기 발생 시나리오에 대한 폐쇄후 장기 방사선적 안전성 평가)

  • 황용수;서은진;이연명;강철형
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.2
    • /
    • pp.105-112
    • /
    • 2004
  • A waste container, one of the key components of a multi-barrier system in a potential high level radioactive waste (HLW) repository in Korea ensures the mechanical stability against the lithostatic pressure of a deep geologic medium and the swelling pressure of the bentonite buffer. Also, it delays potential release of radionuclides for a certain period of time, before it is corroded by intruding impurities. Even though the material of a waste container is carefully chosen and its manufacturing processes are under quality assurance processes, there is a possibility of initial defects in a waste container during manufacturing. Also, during the deposition of a waste container in a repository, there is a chance of an incident affecting the integrity of a waste container. In this study, the appropriate Features, Events, and Processes(FEP's) to describe these incidents and the associated scenario on radionuclide release from a container to the biosphere are developed. Then the total system performance assessment on the Initial waste Container Failure (ICF) scenario was carried out by the MASCOT-K, one of the probabilistic safety assessment tools KAERI has developed. Results show that for the data set used in this paper, the annual individual dose for the ICF scenario meets the Korean regulation on the post closure radiological safety of a repository.

  • PDF

A Study on Deformation Behavior of Thrust Cut Off System under High Pressure (고압하 추력중단장치의 변형거동 연구)

  • Park Sung-Han;Chang Hong-Been;Lee Hwan-Gyu;Kang Moon-Jung;Kim Jae-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.89-95
    • /
    • 2005
  • Thrust cut off(TCO) system is installed at the port of a rocket motor case forward dome. The snap ring and the closure are escaped sequentially by pulling out a wedge under internal pressure. The hydraulic structural tests of TCO and numerical simulations were performed, and both results were compared to understand the deformation behavior of TCO. By increasing splines symmetrically, the sealing capacity of TCO can be improved significantly. The escape pressure of TCO increases according to the increase of friction coefficient and there is a critical friction coefficient beyond which the snap ring can not be nearly escaped even after forced escape of wedge. Under low friction coefficient the snap ring is contracted to radial direction and easily escaped. But, under high friction coefficient, the snap ring can not be escaped from the port even after severe plastic deformation.

A Numerical Study on the Dynamic Characteristics of Water Hammer Arresters for Building Service Applications (건축설비용 워터햄머흡수기의 동특성에 관한 수치 연구)

  • 노승환;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.269-277
    • /
    • 2002
  • Dynamic characteristics of water hammer arresters installed in a building water supply system have been investigated numerically by utilizing a commercial rode that employs the method of characteristics. Some preliminary results with those arresters produced in this study agree well with the previously reported. Then, the arresters have been incorporated into a water supply pipe system of a $59m^2$ apartment unit constructed by a leading construction company, and their dynamic characteristics, especially on the reduction in the water hammer pressure, are investigated. It is found that the setting of the arresters in the pipe system, which is recommended by the company, may not be proper for reducing the pressure to less than 1082.0 kPa when buick-closure valves in the pipe system are closed within 30 ms at the static pressure of 542.6 kPa. More arresters in the system may be required to meet a pressure criteria.

Dynamic Characteristics of Water Hammer Arresters for Building Service Applications

  • Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.40-49
    • /
    • 2003
  • Dynamic characteristics of water hammer arresters installed in a building water supply system have been investigated numerically by utilizing a commercial code that employs the method of characteristics. Some preliminary results with those arrester models produced in this study agree well with the previously reported. Then, the arrester models have been incorporated into a water supply pipe system of a 59 $m^2$apartment unit constructed by a leading construction company, and their dynamic characteristics have been investigated, especially on the reduction in the water hammer pressure. It is found that the setting of the arresters in the pipe system, which is recommended by the company, may not be proper for reducing the pressure down below 1,082.0 kPa (10.0 kg$g_f$/$cm^2$) when quick-closure valves in the pipe system are closed within 30 ms at the static pressure of 542.6 kPa (4.5 kg$g_f$/$cm^2$). More arresters in the system may be required to meet pressure criteria stated on the related standards and codes.

RPV 상하부에서 발생되는 금속파편의 충격위치 평가

  • 최재원;이일근;송영중;구인수;박희윤
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.166-171
    • /
    • 1997
  • LPMS(Loose Part Monitoring System)는 원자로 및 냉각재계통내에서 발생하는 금속파편의 검출 및 분석을 위하여 사용되는 진단 장비이다. 본 논문에서는 RPV(Reactor Pressure Vessel)의 상부헤드(closure head)와 하부헤드(lower head)에서의 금속파편의 충격위치를 평가하는 LPMS를 위한 새로운 기법을 제안하고, Mock-up에서의 실험을 통하여 그 효용성을 검증하였다. 즉, 수정된 원교차법을 제안하고, 이를 반구로 모델링된 RPV의 상ㆍ하부헤드에 존재하는 금속파편의 위치평가에 적용하므로써 정확한 충격위치를 찾을 수 있음을 보였다. 이들 결과는 충격물질의 질량이나 에너지를 계산하는데 정확한 정보를 제공해 줄 수가 있다.

  • PDF

An analysis of water hammer in pipeline systems with pump (펌프관로계의 수격현상 해석)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.92-99
    • /
    • 1998
  • Unsteady flow problems created by hydraulic transients in pipeline systems with pump are of significant importance because they can cause excessive pressure, cavitation, vibration and noise. In this paper, an analysis of transient flow for the pump pipelines is developed by means of the characteristic method. The calculated results of the program to simulate water hammer due to sudden valve closure in a simple pipeline are compared with those of the analytical method. Expecially the water hammer due to power failure in pump pipeline system with surge tank was simulated. As the results, both the upsurge and the downsurge along the pipeline are reduced.

  • PDF

A Computational Analysis of Water-Hammer (수격현상에 대한 수치적 고찰)

  • Chun, Kwang-Min
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • The water-hammer phenomena caused by pump power failure are analysed by digital computer. Asan cool ins water pipe system has been chosen as a model. It is Shown that after power failure the pressure at the pump outlet drops sharply, and to prevent reverse flow, either butterfly valve or check valve can be used. After the valve closure, pressure oscillates behind the valve. To weaken the pressure wave, it is recommended to install a servo-operated valve in a bypass Line around the pamp and the check valve.

  • PDF