• 제목/요약/키워드: synthetic gene

검색결과 291건 처리시간 0.026초

MC3T3-E1 세포증식 및 골기질 단백질 발현에 대한 인슐린유사성장인자-I의 효과 (Insulin - Like Growth Factor-I Effects on the Proliferation and Bone Matrix Protein Gene Expression of MC3T3-E1 Cell)

  • 이동식;이재목;서조영
    • Journal of Periodontal and Implant Science
    • /
    • 제30권2호
    • /
    • pp.389-405
    • /
    • 2000
  • The purpose of this study is to evaluate the effect of IGF-I for DNA synthetic activity and the mRNA expression of bone matrix protein, type I collagen and osteopontin in prolifetation and differentiation of MC3T3-E1 cells. To evaluate DNA synthetic activity, cells were seeded at $2{\times}10^4cells/ml$ in 24 well plates and to evaluate mRNA of type I collagen and osteopontin cells were seeded at $5{\times}10^5cells/ml$ in 100mm culture dishes. These cells were cultured in alpha-minimum essential medium(${\alpha}-MEM$) containing 10% fetal bovine serum at $37^{\circ}C$, 5% $CO_2$ incubator. For DNA synthetic activity test 1, 10, 100ng/ml IGF-I were added to the cells which had been cultured for 3 days before 24 hours. For type I collagen mRNA expression 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 10 days and for osteopontin mRNA expression 0.1, 1, 10ng/ml IGF-I were added to the cells which had been cultured for 5, 15, 20 days. Cell proliferaton was measured by the incorporation of [$^3H$]-thymidine into DNA and expression for type I collagen and osteopontin were measured by northern blot analysis. The results were as follows : DNA synthetic activity were generally higher in experimental group than control group. Expressions of type I collagen mRNA were higher at 5 day group and much lower at 10 day group in the control groups. In the experimental groups, mRNA expressions were slightly increased when 1 ng/ml IGF-I were added to 5 day group and decreased in all experimental 10 day groups. Expressions of osteopontin mRNA were higher at 20 day groups and lower at 15 day groups than the control groups. In the experimental groups, mRNA expressions were incereased when 0.1, 1 ng/ml IGF-I were added to 5 day group and in all the 15 day groups, but decreased when 0.1, 1, 10 ng/ml IGF-I were added to 20 day groups. IGF-I stimulated DNA synthetic activity of MC3T3-E1 cells during proliferation stage significantly, did not greatly changed effects on type I collagen mRNA expression and stimulated osteopontin mRNA expression at 15 day especially. In conclusion, we suggests that IGF-I have a tendency of stimulation effect of DNA synthetic activity but do not stimulate type I collagen mRNA in proliferation stage of MC3T3-E1 cell cultures, and stimulate osteopontin mRNA in differentiation stage of MC3T3-E1 cell cultures.

  • PDF

유전자 인공합성을 이용한 구제역 유전자 VP1의 제작과 Agrobacterium Vector System을 이용한 담배 형질전환 (Construction of FMDV VP1 Gene Using Artificial DNA Synthesis and Transformation of Nicotiana tabacum Using Agrobacterium Vector System)

  • 이은정;임희영;김성훈;강경선;박영두;윤충효;윤병수
    • Journal of Plant Biotechnology
    • /
    • 제31권4호
    • /
    • pp.285-293
    • /
    • 2004
  • FMDV는 동물에서 구제역을 일으키는 병원체이며, VP1은 이 바이러스의 주요 capsid단백질이므로 구제역의 진단과 단백질 백신의 개발에 가장 많이 사용되는 재료 중 하나이다. 본 연구는 FMDV taiwan O형과 베트남에서 분리된 FMDV의 VP1 sequence를 기반으로 식물에서 VP1 유전자의 발현을 위하여 633 bp의 VP1유전자로 재편집하였으며, 이를 long-nucleotide를 사용한 multiple fragment extension 방법을 사용하여 인공적인 DNA 단편을 합성하였다. 또한 새로운 식물 형질전환 벡터로 pBI121 과 pCAMBIA1390의 장점을 수용하여, hygromycin 저항성과 CaMV 35S promoter를 포함하는 pCAMBIA II를 제작하였다. 제작된 벡터와 VP1 유전자 및 GFP유전자를 사용하여 담배를 형질 전환시켰고, 각각의 형질전환식물체내에서 전체길이의 target gene(VPl)의 성공적인 삽입을 확인하였다. 각 유전자의 발현은 RT-PCR과 Real-Time PCR의 결과로 측정하였으며, VP1 유전자의 전사가 담배 내에서 이루어졌음과 고효율의 전사체를 만드는 형질전환체 VP1-4를 선별하였다.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • 제6권1호
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Bone Charcoal에 의한 폐수증의 중금속 흡착특성 (Adsorption Characteristics of Heavy Metals in Wastewater on Bone Charcoal)

  • 정팔진;곽동희;이재욱
    • 한국물환경학회지
    • /
    • 제16권4호
    • /
    • pp.555-563
    • /
    • 2000
  • The study was conducted to evaluate the adsorption equilibrium of heavy metals on bone charcoal made of livestock bone which was sintered at $550{\sim}600^{\circ}C$. Analysis of bone charcoal by XRD and FT-IR showed that crystal structure was similar to that of synthetic hydroxyapatite. Adsorption equilibrium capacity of single component (Pb, Cd, and Zn) on bone charcoal could be expressed as Langmuir, Freundlich, and Sips equations. Sips isotherm was best among the three isotherms. The values predicted by IAST(ideal adsorbed solution theory) showed good relationship to the experimental data in multicomponent adsorption equilibrium. Adsorption affinity was in order of Pb, Cd, and Zn. The order was same in case of activated carbon or synthetic hydroxyapatite. Through the study results. it would be expected that bone charcoal made of livestock could be used in field of wastewater treatment plants as adsorbent to remove heavy metal.

  • PDF

Expression and Purification of an ACE-Inhibitory Peptide Multimer from Synthetic DNA in Escherichia coli

  • OH, KWANG-SEOK;YONG-SUNG PARK;HA-CHIN SUNG
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.59-64
    • /
    • 2002
  • An angiotensin I-converting enzyme (EC 3.4.15.1) (ACE), which can convert inactive angiotensin I into angiotensin II, a vasoconstrictor, is one of the key enzymes in controlling hypertension. It is suggested that the inhibition of ACE prevents hypertension, and many inhibitory peptides have already been reported. In the current study, oligonucleotides encoding ACE inhibitory peptides (IY, VKY) were chemically synthesized and designed to be multimerised due to isoschizomer sites (BamHI, BglII). The cloned gene named AP3 was multimerised up to 6 times in pBluescript and expressed in BL2l containing pGEX-KG. The fusion protein (GST-AP3) was easily purified with a high recovery by an affinity resin, yielding 38 mg of synthetic AP3 from a 1-1 culture. The digestion of AP3 by chymotrypsin exhibited an $IC_50$ value of $18.53{\mu}M$. In conclusion, the present experiment indicated that AP3 could be used as a dietary antihypertensive drug, since the potent ACE inhibitory activity of AP3 could be activated by chymotrypsin in human intestine.

Microbial linguistics: perspectives and applications of microbial cell-to-cell communication

  • Mitchell, Robert J.;Lee, Sung-Kuk;Kim, Tae-Sung;Ghim, Cheol-Min
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.1-10
    • /
    • 2011
  • Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

Synthesis and Characterization of Oligonucleotides Containing Site-Specific Bulky $N^2$-Aralkylated Guanines and $N^6$-Aralkylated Adenines

  • Moon, Ki-Young;Kim, Yeong-Shik
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.139-146
    • /
    • 2000
  • 7- Bromomethylbenz[a]anthracene is a known mutagen and carcinogen. The two major DNA adducts produced by this carcinogen, i.e., $N^2$-(benz[a]anthracen-7-yl methyl)-2'-deoxyguanosine (2, b[a]$a^2$G) and $N^6$-(benz[a]anthracen-7-ylmethyl)-2'-deoxyadenosine (4, b[a]$a^6$/A), as wel 1 as the simpler benzylated analogs,$N^2$-benzyl-2'deoxyguanosine (1, $bn^2$G) and $N^6$-benzyl-2'-deoxyadenosine (3, $bn^6$/A), were prepared by direct aralkylation of 2'-deoxyguanosine and 2'-deoxyadenosine. To determine the site-specific mutagenicity of these bulky exocyclic amino-substituted adducts, the suitably protected nucleosides were incorporated into 16-base oligodeoxyribonucleotides in place of a normal guanine or adenine residues which respectively are part of the ATG initiation codon for the lac Z' \alpha-complementation gene by using an in situ activation approach and automated phosphite triester synthetic methods. The base composition and the incorporation of the bulky adducts into synthetic oligonucleotides were characterized after purification of the modified oligonucleotides by enzymatic digestion and HPLC analysis.

  • PDF

Stem Cells and Cell-Cell Communication in the Understanding of the Role of Diet and Nutrients in Human Diseases

  • Trosko James E.
    • 한국식품위생안전성학회지
    • /
    • 제22권1호
    • /
    • pp.1-14
    • /
    • 2007
  • The term, "food safety", has traditionally been viewed as a practical science aimed at assuring the prevention acute illnesses caused by biological microorganisms, and only to a minor extent, chronic diseases cause by chronic low level exposures to natural and synthetic chemicals or pollutants. "food safety" meant to prevent microbiological agents/toxins in/on foods, due to contamination any where from "farm to Fork", from causing acute health effects, especially to the young, immune-compromised, genetically-predisposed and elderly. However, today a broader view must also include the fact that diet, perse (nutrients, vitamins/minerals, calories), as well as low level toxins and pollutant or supplemented synthetic chemicals, can alter gene expressions of stem/progenitor/terminally-differentiated cells, leading to chronic inflammation and other mal-functions that could lead to diseases such as cancer, diabetes, atherogenesis and possibly reproductive and neurological disorders. Understanding of the mechanisms by which natural or synthetic chemical toxins/toxicants, in/on food, interact with the pathogenesis of acute and chronic diseases, should lead to a "systems" approach to "food safety". Clearly, the interactions of diet/food with the genetic background, gender, and developmental state of the individual, together with (a) interactions of other endogenous/exogenous chemicals/drugs; (b) the specific biology of the cells being affected; (c) the mechanisms by which the presence or absence of toxins/toxicants and nutrients work to cause toxicities; and (d) how those mechanisms affect the pathogenesis of acute and/or chronic diseases, must be integrated into a "system" approach. Mechanisms of how toxins/toxicants cause cellular toxicities, such as mutagenesis; cytotoxicity and altered gene expression, must take into account (a) irreversible or reversal changes caused by these toxins or toxicants; (b)concepts of thresholds or no-thresholds of action; and (c) concepts of differential effects on stem cells, progenitor cells and terminally differentiated cells in different organs. This brief Commentary tries to illustrate this complex interaction between what is on/in foods with one disease, namely cancer. Since the understanding of cancer, while still incomplete, can shed light on the multiple ways that toxins/toxicants, as well as dietary modulation of nutrients/vitamins/metals/ calories, can either enhance or reduce the risk to cancer. In particular, diets that alter the embryo-fetal micro-environment might dramatically alter disease formation later in life. In effect "food safety" can not be assessed without understanding how food could be 'toxic', or how that mechanism of toxicity interacts with the pathogenesis of any disease.

생쥐 초기배아의 유전자 활성에 미치는 Protein Kinase Inhibitors의 영향 (Effects of Protein Kinase Inhibitors on Gene Activation of Early Embryos in Mouse)

  • 이정은;채영규;배인하;윤용달;김문규
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제22권2호
    • /
    • pp.191-201
    • /
    • 1995
  • Transcriptional activation of the embryonic genome initiates at 2-cell stage in mouse embryo and is characterized by the synthesis of TRC which is restricted to 2-cell stage. To investigate the roles of various protein kinases on the embryonic gene activation, the effects of protein kinase inhibitors on in vitro development and protein synthetic profiles of the early mouse embryos were examinded. None of ${\alpna}-amanitin$ which is a mRNA synthetic inhibitor, H8 which is a PKA inhibitor, and H7 which is a PKC inhibitor, affected on first cleavage of mouse 1-cell embryos in vitro. However, all of these drugs inhibited the second cleavage. When the drugs were removed following treatment for 6 hours, H8 or H7 treatment showed little inhibition on subsequent development of 1-cell embryos to 2-cell stage or further. In contrast, ${\alpna}-amanitin$ irreversibly inhibited the development of 1-cell embryos to 2-cell stage following removal of the drug. Genistein, a TPK inhibitor, inhibited both the first cleavage of 1-cell embryos and the second cleavage of 2-cell embryos, suggesting that TPK activity may be important during the early cleavages. All of the above four drugs inhibited TRC synthesis as shown by the fluorographic analysis of $[^{35}S]-Met$ labeled protein profiles. When late 1-cell embryos were treated with H7 and analyzed synthetic patterns of $[^{35}S]-Met$ labeled protein, the quantitative differences of protein synthesis on SDS-PAGE appeared on 77 kD and 33 kD region at $32{\sim}38$ hours post hCG. From these studies, transcriptional activation of embryonic genome is not essenting to the mouse 1-cell embryos to develop to 2-cell stage. Hawever, TPK activity is reguisite for both the first cleavage and second cleavage. Similarly, both PKC and PKA activities are required for the second cleavage of mouse embryos, but not for the first cleavage.

  • PDF

YJI-7 Suppresses ROS Production and Expression of Inflammatory Mediators via Modulation of p38MAPK and JNK Signaling in RAW 264.7 Macrophages

  • Oh, Hye Jin;Magar, Til Bahadur Thapa;Pun, Nirmala Tilija;Lee, Yunji;Kim, Eun Hye;Lee, Eung-Seok;Park, Pil-Hoon
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.191-200
    • /
    • 2018
  • Chalcone, (2E)-1,3-Diphenylprop-2-en-1-one, and its synthetic derivatives are known to possess anti-oxidative and anti-inflammatory properties. In the present study, we prepared a novel synthetic chalcone compound, (E)-1-(4-hydroxyphenyl)-3-(2-(trifluoromethoxy)phenyl)prop-2-en-1-one name (YJI-7), and investigated its inhibitory effects on endotoxin-stimulated production of reactive oxygen species (ROS) and expression of inflammatory mediators in macrophages. We demonstrated that treatment of RAW 264.7 macrophages with YJI-7 significantly suppressed lipopolysaccharide (LPS)-stimulated ROS production. We also found that YJI-7 substantially decreased NADPH oxidase activity stimulated by LPS, indicating that YJI-7 regulates ROS production via modulation of NADPH oxidase in macrophages. Furthermore, YJI-7 strongly inhibited the expression of a number of inflammatory mediators in a gene-selective manner, suggesting that YJI-7 possesses potent anti-inflammatory properties, as well as anti-oxidative activity. In continuing experiments to investigate the mechanisms that could underlie such biological effects, we revealed that YJI-7 suppressed phosphorylation of p38MAPK and JNK stimulated by LPS, whereas no significant effect on ERK was observed. Furthermore, LPS-stimulated production of ROS, activation of NADPH oxidase and expression of inflammatory mediators were markedly suppressed by treatment with selective inhibitor of p38MAPK (SB203580) and JNK (SP600125). Taken together, these results demonstrated that YJI-7, a novel synthetic chalcone derivative, suppressed LPS-stimulated ROS production via modulation of NADPH oxidase and diminished expression of inflammatory mediators, at least in part, via down-regulation of p38MAPK and JNK signaling in macrophages.