• Title/Summary/Keyword: synthetic fuel

Search Result 141, Processing Time 0.027 seconds

Experimental Study on the Radiation Efficiency and Combustion Characteristics with Respective to the Mat Thickness and the Fuel Kinds in Metal-Fiber Burner (메탈화이버 버너에서 매트 두께와 연료 종류에 따른 복사 효율 및 연소 특성에 관한 실험적 연구)

  • KIM, JAE HYEON;LEE, KEE MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.512-522
    • /
    • 2018
  • This study was conducted to investigate on the combustion characteristic with the effects of mat thickness and fuel kinds in a metal-fiber burner. The mode transition point is confirmed by the K value, which was defined as the rate of flow velocity and laminar burning velocity. The ($T^4_{sur}-T^4_{\infty}$) is highest at methane flame with 3 T thickness. Through the measurement of the unburned mixture temperature, the possibility of submerged flame in surface combustion burner was confirmed. The rapid emission of CO occurs nearby limit blow out (LBO) because of the increase of flow velocity. In case of NOx, the trend is similar with surface temperature. However, it also considered that the NOx emission is affected by residence time with flame position.

3D reconstruction of two-phase random heterogeneous material from 2D sections: An approach via genetic algorithms

  • Pizzocri, D.;Genoni, R.;Antonello, F.;Barani, T.;Cappia, F.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2968-2976
    • /
    • 2021
  • This paper introduces a method to reconstruct the three-dimensional (3D) microstructure of two-phase materials, e.g., porous materials such as highly irradiated nuclear fuel, from two-dimensional (2D) sections via a multi-objective optimization genetic algorithm. The optimization is based on the comparison between the reference and reconstructed 2D sections on specific target properties, i.e., 2D pore number, and mean value and standard deviation of the pore-size distribution. This represents a multi-objective fitness function subject to weaker hypotheses compared to state-of-the-art methods based on n-points correlations, allowing for a broader range of application. The effectiveness of the proposed method is demonstrated on synthetic data and compared with state-of-the-art methods adopting a fitness based on 2D correlations. The method here developed can be used as a cost-effective tool to reconstruct the pore structure in highly irradiated materials using 2D experimental data.

Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions

  • Hee-Kyung Kim;Hye-Ryun Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.399-410
    • /
    • 2022
  • The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (SynDB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4-10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5-10.5, the concentration of dissolved Am(III) converged to approximately 2×10-7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.

The SIMDIST (Simulated Distillation) Analysis of Distributing Engine Oil (국내 유통 엔진오일 고온모사증류시험 분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Kim, Jong-Ryeol;Ha, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.632-637
    • /
    • 2017
  • The vehicle lubricant occupies upto 35% in a total lubricant market and engine oil occupies upto 77% in the vehicle lubricant market in Korea. A suitable quality management of the circulating engine oil is necessary for driver and engine protection. But, KS and synthetic engine oil products (involved over 30% synthetic oil) are exempt to any quality management under Petroleum and Alternative Fuel Business Act. It is also known that synthetic oils such as PAO (poly alpha olefin) have excellent properties and performance like anti-wear, varnish control and oxidation stability than those of mineral oils. For this reason, PAO has been used for an engine oil, rotary screw and reciprocating compressor in addition to heavy duty and other extreme service applications. In this study, our research group analyzed the chromatogram pattern for the mineral oil, PAO and mineral oil involved a typical ratio of PAO using SIMDIST (simulated distillation). In the SIMDIST chromatogram, the mineral oil showed a broad peak, while PAO showed a sharp typical peak. Also the oil with a large viscosity grade exhibited a long retention time due to the heavy molecular weight and high boiling point. In particular, the blended mineral oil with 20% PAO sample showed a distinctly different pattern compared to that of using the conventional mineral oil. For monitoring PAO contents in distributing engine oils, we analyzed the SIMDIST for 27 kinds of engine oils which were popularly sold in Korea. The analytic results indicate that all kinds of engine oils showed that PAO contents were below 20% in engine oil products. Moreover, the PAO titled product was found to have a small amount of PAO. Thus, we conclude that the related laws for the proper quality management of synthetic oils are needed to be established.

The Leaching Behavior of Unirradiated $UO_2$ Pellets in Wet Storage and Disposal Conditions

  • Park, Geun-Il;Lee, Hoo-Kun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.349-358
    • /
    • 1996
  • The leaching behavior of uranium from unirradiated CANDU UO$_2$ fuel pellet in the spent fuel wet storage and disposal conditions has been investigated. A modified IAEA leach test method was used, and then the extent of leaching was monitored by analysis for uranium in the leachant. The leach test has been performed in various leachants(demineralized water and boric acid solution at pH=6, synthetic granite groundwater) for a long-term period of 5.4 years, and the effect of temperature on the leach rate of uranium has been analyzed. The leach rates of uranium at $25^{\circ}C$ were dependent on the leachants. Over initial 100 days of leach periods, the leach rate in groundwater was the highest in three leachants and no significant differences of leach rates ore observed in the demineralized oater and boric acid solution. But these leach rates in three leachants around 2,000 days at $25^{\circ}C$ appeared to be reached the steady rates in the range of 1~5$\times$10$^{-8}$ g/$\textrm{cm}^2$ day. The leach rate of uranium in groundwater shooed to be independent of the temperature, but those in both demineralized water and boric acid solution increased with temperature. These results show that the leaching behavior of uranium from UO$_2$ fuel in both the demineralized water ann boric acid may be controlled tv the surface oxidative.dissolution reaction of UO$_2$ and the leach rate of uranium in groundwater at room temperature could mainly be controlled by the complex reaction of dissolved uranyl ions with carbonate ions and no variation of leach rate of UO$_2$ in groundwater with temperature may be due to the local deposition of passivating uranyl phases on the surface.

  • PDF

Development of Genome Engineering Tools for Metabolic Engineering of Butanol-producing Clostridium Species (Butanol 생합성 Clostridium 속 미생물 대사공학용 게놈 편집 도구 개발)

  • Woo, Ji Eun;Kim, Minji;Lee, Ji Won;Seo, Hyo Joo;Lee, Sang Yup;Jang, Yu-Sin
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.193-199
    • /
    • 2016
  • Global warming caused from the heavy consumption of fossil fuel is one of the biggest problems to be solved. Biofuel has been gained more attention as an alternative to reduce the consumption of fossil fuel. Recently, butanol produced from the genus Clostridium has been considered as one of the promising alternatives for gasoline, fossil based fuel. Nevertheless, the lack of the genome-engineering tools for the genus Clostridium is the major hurdle for the economic production of butanol. More recently, genome engineering tools have been developed for metabolic engineering of butanol-producing Clostridium species, which includes genome scale network model and genome editing tools on the basis of mobile group II introns and CRISPR/Cas system. In this study, the genome engineering tools for butanol-producing Clostridium species have been reviewed with a brief future perspective.

Synthesis and Characterization of Spherical Nano Ni(1-x)-M(x=0~0.15)(M=Co, Fe) Alloy Powder for SOFC Anode (SOFC anode용 나노구형 Ni(1-x)-M(x=0~0.15)(M=Co, Fe) alloy 분말 합성 및 그 특성)

  • Lee, Min-Jin;Choi, Byung-Hyun;Ji, Mi-Jung;An, Young-Tae;Hong, Sun-Ki;Kang, YoungJin;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.367-373
    • /
    • 2014
  • In this study, the reducing agent hydrazine and precipitator NaOH were used with $NiCl_2$ as a starting material in order to compound Ni-based material with spherical nano characteristics; resulting material was used as an anode for SOFC. Synthetic temperature, pH, and solvent amounts were experimentally optimized and the synthesis conditions were confirmed. Also, a 0 ~ 0.15 mole ratio of metal(Co, Fe) was alloyed in order to increase the catalyst activation performance of Ni and finally, spherical nano $Ni_{(1-x)}-M_{(x=0{\sim}0.15)}$(M = Co, Fe) alloy materials were compounded. In order to evaluate the catalyst activation for hydrocarbon fuel, fuel gas(10%/$CH_4$+10%/Air) was added and the responding gas was analyzed with GC(Gas Chromatography). Catalyst activation improvement was confirmed from the 3% hydrogen selectivity and 2.4% methane conversion rate in $Ni_{0.95}-Co_{0.05}$ alloy; those values were 4.4% and 19%, respectively, in $Ni_{0.95}-Fe_{0.05}$ alloy.

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application

  • Choi, Kwang-Hyun;Shokouhimehr, Mohammadreza;Kang, Yun Sik;Chung, Dong Young;Chung, Young-Hoon;Ahn, Minjeh;Sung, Yung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1195-1198
    • /
    • 2013
  • Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.

Performance Evaluations of Direct Formic Acid Fuel Cell (DFAFC) using PdCu Catalysts Synthesized by Control in Amount of Ethylene Glycol (에틸렌글리콜 양 조절에 의해 제조된 팔라듐구리 촉매를 이용한 개미산연료전지 성능평가)

  • YANG, JONGWON;KIM, LAEHYUN;KWON, YONGCHAI
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.3
    • /
    • pp.283-289
    • /
    • 2016
  • In this study, electrochemical characterizations of PdCu/C catalysts that are synthesized by modified polyol method are investigated. Most of all, amount of ethylene glycol (EG) that is used as main component for catalyst synthesis is mainly modulated to optimize synthetic condition of the PdCu/C catalyst, For evaluations about catalytic activity and performance of direct formic acid fuel cell (DFAFC), half cell and full cell tests are implemented. As a result, when amount of EG is 4M, catalytic activities of the PdCu/C catalyst such as peak current of formic acid oxidation and active surface area are best, while maximum power density of DFAFC using the optimized PdCu/C catalyst is better than that using commercial Pd/C (30 wt%) by 6%. Based on that, PdCu/C catalyst synthesized by modified polyol method plays a critical role in improving (i) catalytic activity for formic acid oxidation and (ii) DFAFC performance by employing as anodic catalyst.

Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells (유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석)

  • Sung, Hukwang;Sharma, Monika;Jang, Jeonghee;Jung, Namgee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.