DOI QR코드

DOI QR Code

Evaluation of Americium Solubility in Synthesized Groundwater: Geochemical Modeling and Experimental Study at Over-Saturation Conditions

  • Received : 2022.10.24
  • Accepted : 2022.11.04
  • Published : 2022.12.30

Abstract

The solubility and species distribution of radionuclides in groundwater are essential data for the safety assessment of deep underground spent nuclear fuel (SNF) disposal systems. Americium is a major radionuclide responsible for the long-term radiotoxicity of SNF. In this study, the solubility of americium compounds was evaluated in synthetic groundwater (SynDB3), simulating groundwater from the DB3 site of the KAERI Underground Research Tunnel. Geochemical modeling was performed using the ThermoChimie_11a thermochemical database. Concentration of dissolved Am(III) in Syn-DB3 in the pH range of 6.4-10.5 was experimentally measured under over-saturation conditions by liquid scintillation counting over 70 d. The absorption spectra recorded for the same period suggest that Am(III) colloidal particles formed initially followed by rapid precipitation within 2 d. In the pH range of 7.5-10.5, the concentration of dissolved Am(III) converged to approximately 2×10-7 M over 70 d, which is comparable to that of the amorphous AmCO3OH(am) according to the modeling results. As the samples were aged for 70 d, a slow equilibrium process occurred between the solid and solution phases. There was no indication of transformation of the amorphous phase into the crystalline phase during the observation period.

Keywords

Acknowledgement

This research was supported by the Nuclear Research and Development Program of the National Research Foundation of Korea (Grant Nos. 2021M2E1A1085202 and 2022M2D2A1A02063990).

References

  1. J.I. Kim, "Significance of Actinide Chemistry for the Long-Term Safety of Waste Disposal", Nucl. Eng. Technol., 38, 459-482 (2006).
  2. R. Guillaumont, T. Fanghanel, V. Neck, J. Fuger, D. Palmer, I. Grenthe, and M.H. Rand, Chemical Thermodynamics Vol. 5: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, Elsevier, Amsterdam (2003).
  3. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). https://doi.org/10.1021/cr300370h
  4. M. Altmaier, X. Gaona, and T. Fanghanel, "Recent Advances in Aqueous Actinide Chemistry and Thermodynamics", Chem. Rev., 113(2), 901-943 (2013). https://doi.org/10.1021/cr300379w
  5. W. Runde, "The Chemical Interactions of Actinides in the Environment", Los Alamos Science, 26, 392-411 (2000).
  6. I. Grenthe, X. Gona, A.V. Plyasunov, L. Rao, W.H. Runde, B. Grambow, R.J.M. Konings, A.L. Smith, and E.E. Moore. Chemical Thermodynamics Vol. 14: Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, OECD Nuclear Energy Agency Report (2020).
  7. M. Grive, L. Duro, E. Colas, and E. Giffaut, "Thermodynamic Data Selection Applied to Radionuclides and Chemotoxic Elements: An Overview of the ThermoChimie-TDB", Appl. Geochemistry, 55, 85-94 (2015). https://doi.org/10.1016/j.apgeochem.2014.12.017
  8. E. Giffaut, M.M. Grive, P. Blanc, P. Vieillard, E. Colas, H. Gailhanou, S. Gaboreau, N. Marty, B. Made, and L. Duro, "Andra Thermodynamic Database for Performance Aassessment: ThermoChimie", Appl. Geochemistry, 49, 225-236 (2014). https://doi.org/10.1016/j.apgeochem.2014.05.007
  9. H.J. Ervanne, M.E. Hakanen, and E.J. Puukko. Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto: Radionuclide Migration Parameters for the Geosphere, Posiva Report, Vol.2012/41 (2014).
  10. J.J. Katz, G.T. Seaborg, and L.R. Morss, The Chemistry of the Actinide Elements, 2nd ed., Springer, New York (1986).
  11. W. Runde, "Americium and Curium: Radionuclides", in : Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd., New Jersey (2006).
  12. International Atomic Energy Agency. "Live Chart of Nuclides-Nuclear Structure and Decay Data." IAEA-Nuclear Data Section. Accessed Oct. 15 2022. Available from: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.
  13. H.K. Kim, H.R. Cho, E.C. Jung, and W. Cha, "Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes", J. Nucl. Fuel Cycle Waste Technol., 16(4), 397-410 (2018). https://doi.org/10.7733/jnfcwt.2018.16.4.397
  14. H.K. Kim, K. Jeong, H.R. Cho, E.C. Jung, K. Kwak, and W. Cha, "Spectroscopic Speciation of Aqueous Am(III)-Oxalate Complexes", Dalton Trans., 48(27), 10023-10032 (2019). https://doi.org/10.1039/c9dt01087d
  15. H.K. Kim, K. Jeong, H.R. Cho, K. Kwak, E.C. Jung, and W. Cha, "Study of Aqueous Am(III)-Aliphatic Dicarboxylate Complexes: Coordination Mode-Dependent Optical Property and Stability Changes", Inorg. Chem., 59(19), 13912-13922 (2020). https://doi.org/10.1021/acs.inorgchem.0c01538
  16. E.C. Jung, H.R. Cho, M.H. Baik, H. Kim, and W. Cha, "Time-resolved Laser Fluorescence Spectroscopy of UO2(CO3)34-n", Dalton Trans., 44(43), 18831-18838 (2015). https://doi.org/10.1039/C5DT02873F
  17. S.E. Stephanou, J.P. Nigon, and R.A. Penneman, "The Solution Absorption Spectra of Americium(III), (V), and (VI)", J. Chem. Phys., 21, 42-45 (1953). https://doi.org/10.1063/1.1698619
  18. T.K. Keenan, "Americium and Curium", J. Chem. Educ., 36(1), 27-31 (1959). https://doi.org/10.1021/ed036p27
  19. H.K. Kim, "Spectroscopic Characterizations of Aqueous and Colloidal Am(III)-CO3 Complexes for Monitoring Species Evolutions", J. Nucl. Fuel Cycle Waste Technol., 20(4), in press (2022).
  20. J.I. Kim, D.S. Rhee, and G. Buckau, "Complexation of Am(III) With Humic Acids of Different Origin", Radiochim. Acta, 52-53(1), 49-55 (1991). https://doi.org/10.1524/ract.1991.5253.1.49
  21. M. Morgenstern, R. Klenze, and J.I. Kim, "The Formation of Mixed-Hydroxo Complexes of Cm(III) and Am(III) With Humic Acid in the Neutral pH Range", Radiochim. Acta, 88(1), 7-16 (2000). https://doi.org/10.1524/ract.2000.88.1.007
  22. J.V. Beitz, G. Jursich, and J.C. Sullivan, "Fluorescence Studies of Am3+ in Aqueous Solution", J. Less- Common Met., 126, 301 (1986).
  23. J.V. Beitz, "f-State Luminescence of Trivalent Lanthanide and Actinide Ions in Solution", J. Alloys Compd., 207-208, 41-50 (1994). https://doi.org/10.1016/0925-8388(94)90173-2
  24. A. Barkleit, G. Geipel, M. Acker, S. Taut, and G. Bernhard, "First Fluorescence Spectroscopic Investigation of Am(III) Complexation With an Organic Carboxylic Ligand, Pyromellitic Acid", Spectrochim. Acta A Mol. Biomol. Spectrosc., 78(1), 549-552 (2011). https://doi.org/10.1016/j.saa.2010.09.003
  25. B. Raditzky, S. Sachs, K. Schmeide, A. Barkleit, G. Geipel, and G. Bernhard, "Spectroscopic Study of Americium(III) Complexes With Nitrogen Containing Organic Model Ligands", Polyhedron, 65, 244-251 (2013). https://doi.org/10.1016/j.poly.2013.08.047