References
- Jang, Y. S., J. Y. Lee, J. Lee, J. H. Park, J. A. Im, M. H. Eom, J. Lee, S. H. Lee, H. Song, J. H. Cho, D. Y. Seung, and S. Y. Lee (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 3: e00314-12.
- Nolling, J., G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng, R. Gibson, H. M. Lee, J. Dubois, D. Qiu, J. Hitti, Y. I. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823-4838. https://doi.org/10.1128/JB.183.16.4823-4838.2001
- Cho, C., Y.-S. Jang, H. G. Moon, J. Lee, and S. Y. Lee (2015) Metabolic engineering of clostridia for the production of chemicals. Biof. Bioprod. Bioref. 9: 211-225. https://doi.org/10.1002/bbb.1531
- Mo, X., J. Pei, Y. Guo, L. Lin, L. Peng, C. Kou, D. Fan, and H. Pang (2015) Genome sequence of Clostridium acetobutylicum GX AS18-1, a novel biobutanol production strain. Genome Announc. 3: e00033-15.
- Bao, G., R. Wang, Y. Zhu, H. Dong, S. Mao, Y. Zhang, Z. Chen, Y. Li, and Y. Ma (2011) Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J. Bacteriol. 193: 5007-5008. https://doi.org/10.1128/JB.05596-11
- Hu, S., H. Zheng, Y. Gu, J. Zhao, W. Zhang, Y. Yang, S. Wang, G. Zhao, S. Yang, and W. Jiang (2011) Comparative genomic and transcriptomic analysis revealed genetic characteristics related to solvent formation and xylose utilization in Clostridium acetobutylicum EA 2018. BMC Genomics 12: 93. https://doi.org/10.1186/1471-2164-12-93
- Li, N., J. Yang, C. Chai, S. Yang, W. Jiang, and Y. Gu (2015) Complete genome sequence of Clostridium carboxidivorans P7T, a syngas-fermenting bacterium capable of producing long-chain alcohols. J. Biotechnol. 211: 44-45. https://doi.org/10.1016/j.jbiotec.2015.06.430
- Wang, Y., X. Li, Y. Mao, and H. P. Blaschek (2012) Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics 13: 102. https://doi.org/10.1186/1471-2164-13-102
- Lee, J., Y. S. Jang, M. J. Han, J. Y. Kim, and S. Y. Lee (2016) Deciphering Clostridium tyrobutyricum metabolism based on the wholegenome sequence and proteome analyses. mBio 7: e00743-16.
- Kopke, M., C. Held, S. Hujer, H. Liesegang, A. Wiezer, A. Wollherr, A. Ehrenreich, W. Liebl, G. Gottschalk, and P. Durre (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 107: 13087-13092. https://doi.org/10.1073/pnas.1004716107
- Papoutsakis, E. T. (1984) Equations and calculations for fermentations of butyric acid bacteria. Biotechnol. Bioeng. 26: 174-187. https://doi.org/10.1002/bit.260260210
- Papoutsakis, E. T. and C. L. Meyer (1985) Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations. Biotechnol. Bioeng. 27: 50-66. https://doi.org/10.1002/bit.260270108
- Kim, S., Y. S. Jang, S. C. Ha, J. W. Ahn, E. J. Kim, J. H. Lim, C. Cho, Y. S. Ryu, S. K. Lee, S. Y. Lee, and K. J. Kim (2015) Redoxswitch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nat. Commun. 6: 8410. https://doi.org/10.1038/ncomms9410
- Desai, R. P., L. M. Harris, N. E. Welker, and E. T. Papoutsakis (1999) Metabolic flux analysis elucidates the importance of the acid-formation pathways in regulating solvent production by Clostridium acetobutylicum. Metab. Eng. 1: 206-213. https://doi.org/10.1006/mben.1999.0118
- Sillers, R., M. A. Al-Hinai, and E. T. Papoutsakis (2009) Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations. Biotechnol. Bioeng. 102: 38-49. https://doi.org/10.1002/bit.22058
- Lee, J., H. Yun, A. M. Feist, B. O. Palsson, and S. Y. Lee (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl. Microbiol. Biotechnol. 80: 849-862. https://doi.org/10.1007/s00253-008-1654-4
- Senger, R. S. and E. T. Papoutsakis (2008) Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. Biotechnol. Bioeng. 101: 1036-1052. https://doi.org/10.1002/bit.22010
- Senger, R. S. and E. T. Papoutsakis (2008) Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol. Bioeng. 101: 1053-1071. https://doi.org/10.1002/bit.22009
- Gallardo, R., A. Acevedo, J. Quintero, I. Paredes, R. Conejeros, and G. Aroca (2016) In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply. Bioprocess Biosyst. Eng. 39: 295-305. https://doi.org/10.1007/s00449-015-1513-5
- Milne, C. B., J. A. Eddy, R. Raju, S. Ardekani, P. J. Kim, R. S. Senger, Y. S. Jin, H. P. Blaschek, and N. D. Price (2011) Metabolic network reconstruction and genome-scale model of butanolproducing strain Clostridium beijerinckii NCIMB 8052. BMC Syst. Biol. 5: 130. https://doi.org/10.1186/1752-0509-5-130
- Shinto, H., Y. Tashiro, G. Kobayashi, T. Sekiguchi, T. Hanai, Y. Kuriya, M. Okamoto, and K. Sonomoto (2008) Kinetic study of substrate dependency for higher butanol production in acetonebutanol- ethanol fermentation. Process Biochem. 43: 1452-1461. https://doi.org/10.1016/j.procbio.2008.06.003
- Li, R.-D., Y.-Y. Li, L.-Y. Lu, C. Ren, Y.-X. Li, and L. Liu (2011) An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis. BMC Syst. Biol. 5: S12.
- Haus, S., S. Jabbari, T. Millat, H. Janssen, R.-J. Fischer, H. Bahl, J. R. King, and O. Wolkenhauer (2011) A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. BMC Syst. Biol. 5: 10. https://doi.org/10.1186/1752-0509-5-10
- Thorn, G. J., J. R. King, and S. Jabbari (2013) pH-induced gene regulation of solvent production by Clostridium acetobutylicum in continuous culture: parameter estimation and sporulation modelling. Math. Biosci. 241: 149-166. https://doi.org/10.1016/j.mbs.2012.11.004
- Millat, T., H. Janssen, H. Bahl, R.-J. Fischer, and O. Wolkenhauer (2013) Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture. Microb. Biotechnol. 6: 526-539. https://doi.org/10.1111/1751-7915.12033
- Millat, T., H. Janssen, G. J. Thorn, J. R. King, H. Bahl, R.-J. Fischer, and O. Wolkenhauer (2013) A shift in the dominant phenotype governs the pH-induced metabolic switch of Clostridium acetobutylicumin phosphate-limited continuous cultures. Appl. Microbiol. Biotechnol. 97: 6451-6466. https://doi.org/10.1007/s00253-013-4860-7
- Liao, C., S.-O. Seo, and T. Lu (2016) System-level modeling of acetone-butanol-ethanol fermentation. FEMS Microbiol. Lett. 363: fnw074. https://doi.org/10.1093/femsle/fnw074
- Liao, C., S.-O. Seo, V. Celik, H. Liu, W. Kong, Y. Wang, H. Blaschek, Y.-S. Jin, and T. Lu (2015) Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Proc. Natl. Acad. Sci. USA 112: 8505-8510. https://doi.org/10.1073/pnas.1423143112
- Swinfield, T. J., J. D. Oultram, D. E. Thompson, J. K. Brehm, and N. P. Minton (1990) Physical characterisation of the replication region of the Streptococcus faecalis plasmid pAM beta 1. Gene 87: 79-90.
- Lee, S. Y., L. D. Mermelstein, G. N. Bennett, and E. T. Papoutsakis (1992) Vector construction, transformation, and gene amplification in Clostridium acetobutylicum ATCC 824. Ann. N.Y. Acad. Sci. 665: 39-51. https://doi.org/10.1111/j.1749-6632.1992.tb42572.x
- Fox, M. E., M. J. Lemmon, M. L. Mauchline, T. O. Davis, A. J. Giaccia, N. P. Minton, and J. M. Brown (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3: 173-178.
- Mermelstein, L. D., N. E. Welker, G. N. Bennett, and E. T. Papoutsakis (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Biotechnology 10: 190-195.
- Green, E. M., Z. L. Boynton, L. M. Harris, F. B. Rudolph, E. T. Papoutsakis, and G. N. Bennett (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142: 2079-2086. https://doi.org/10.1099/13500872-142-8-2079
- Shao, L., S. Hu, Y. Yang, Y. Gu, J. Chen, Y. Yang, W. Jiang, and S. Yang (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res. 17: 963-965. https://doi.org/10.1038/cr.2007.91
- Heap, J. T., O. J. Pennington, S. T. Cartman, G. P. Carter, and N. P. Minton (2007) The ClosTron: A universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods 70: 452-464. https://doi.org/10.1016/j.mimet.2007.05.021
- Lambowitz, A. M. and S. Zimmerly (2004) Mobile Group II Introns. Annu. Rev. Genet. 38: 1-35. https://doi.org/10.1146/annurev.genet.38.072902.091600
- Martinez-Abarca, F. and N. Toro (2000) Group II introns in the bacterial world. Mol. Microbiol. 38: 917-926.
- Mohr, G., W. Hong, J. Zhang, G. Z. Cui, Y. Yang, Q. Cui, Y. J. Liu, and A. M. Lambowitz (2013) A targetron system for gene targeting in thermophiles and its application in Clostridium thermocellum. PLoS One 8: e69032. https://doi.org/10.1371/journal.pone.0069032
- Heap, J. T., S. A. Kuehne, M. Ehsaan, S. T. Cartman, C. M. Cooksley, J. C. Scott, and N. P. Minton (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J. Microbiol. Methods 80: 49-55. https://doi.org/10.1016/j.mimet.2009.10.018
- Jang, Y.-S., J. A. Im, S. Y. Choi, J. I. Lee, and S. Y. Lee (2014) Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metabol. Eng. 23: 165-174. https://doi.org/10.1016/j.ymben.2014.03.004
- Haurwitz, R. E., M. Jinek, B. Wiedenheft, K. Zhou, and J. A. Doudna (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329: 1355-1358. https://doi.org/10.1126/science.1192272
- Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821. https://doi.org/10.1126/science.1225829
- Huang, H., C. Chai, N. Li, P. Rowe, N. P. Minton, S. Yang, W. Jiang, and Y. Gu (2016) CRISPR/Cas9-based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth. Biol. (doi: 10.1021/acssynbio.6b00044) in press.
- Wang, Y., Z.-T. Zhang, S.-O. Seo, K. Choi, T. Lu, Y.-S. Jin, and H. P. Blaschek (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J. Biotechnol. 200: 1-5. https://doi.org/10.1016/j.jbiotec.2015.02.005
- Bruder, M. R., M. E. Pyne, M. Moo-Young, D. A. Chung, and C. P. Chou (2016) Extending CRISPR-Cas9 technology from genome editing to transcriptional engineering in Clostridium. Appl. Environ. Microbiol. (doi: 10.1128/aem.02128-16) in press.
- Pyne, M. E., M. R. Bruder, M. Moo-Young, D. A. Chung, and C. P. Chou (2016) Harnessing heterologous and endogenous CRISPRCas machineries for efficient markerless genome editing in Clostridium. Sci. Rep. 6: 25666. https://doi.org/10.1038/srep25666
Cited by
- Metabolic Engineering Strategies of Clostridia for Butyric Acid Production vol.32, pp.3, 2017, https://doi.org/10.7841/ksbbj.2017.32.3.169