• Title/Summary/Keyword: synthase

Search Result 3,015, Processing Time 0.025 seconds

Detection of Zymogenic ChsC Activity in Vegetative Hyphae of Aspergillus nidulans. (Aspergillus nidulans 영양균사에서 효소전구체형 ChsC 활성의 검출)

  • 박범찬;박윤희;박희문
    • Korean Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.178-182
    • /
    • 2004
  • In the vegetative hyphae of Aspergillus nidulans, a zymogenic form of the class I chitin synthase activity was successfully measured by the assay condition for Saccharomyces cerevisiae class I chitin synthase, Chsl. The class I chitin synthase activity of the A. nidulans chsC wild type strain was increased about six-fold by trypsin-pretreatment, but that of the chsC disruption strain revealed no increase. Interestingly enough, level of the class I chitin synthase activity of the chsC disruption strain was almost the same as that of the chsC wild type without trypsin-pretreatment. These results indicated that the A. nidulans ChsC activity could be measured by account-ing the class I chitin synthase activity without the trypsin-pretreatment as an internal control. Consistence to the expression pattern of the chsC revealed by northern blot analysis, the activity of ChsC was increased upon reaching the culture time for acquiring developmental competence. Our results shown here also supported the previous report suggesting the possible involvement of ChsC in vegetative hyphal growth of A. nidulans.

The Photoheterotrophic Growth of Bacteriochlorophyll Synthase-Deficient Mutant of Rhodobacter sphaeroides Is Restored by I44F Mutant Chlorophyll Synthase of Synechocystis sp. PCC 6803

  • Kim, Eui-Jin;Kim, Hyeonjun;Lee, Jeong K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.959-966
    • /
    • 2016
  • Chlorophyll synthase (ChlG) and bacteriochlorophyll synthase (BchG) have a high degree of substrate specificity. The BchG mutant of Rhodobacter sphaeroides, BG1 strain, is photosynthetically incompetent. When BG1 harboring chlG of Synechocystis sp. PCC 6803 was cultured photoheterotrophically, colonies arose at a frequency of approximately 10-8. All the suppressor mutants were determined to have the same mutational change, ChlGI44F. The mutated enzyme ChlGI44F showed BchG activity. Remarkably, BchGF28I, which has the substitution of F at the corresponding 28th residue to I, showed ChlG activity. The Km values of ChlGI44F and BchGF28I for their original substrates, chlorophyllide (Chlide) a and bacteriochlorophyllide (Bchlide) a, respectively, were not affected by the mutations, but the Km values of ChlGI44F and BchGF28I for the new substrates Bchlide a and Chlide a, respectively, were more than 10-fold larger than those for their original substrates, suggesting the lower affinities for new substrates. Taken together, I44 and F28 are important for the substrate specificities of ChlG and BchG, respectively. The BchG activity of ChlGI44F and the ChlG activity of BchGF28I further suggest that ChlG and BchG are evolutionarily related enzymes.

Increase of $CoQ_{10}$ Production Level by the Coexpression of Decaprenyl Diphosphate Synthase and 1-Deoxy-D-xylulose 5-Phosphate Synthase Isolated from Rhizobium radiobacter ATCC 4718 in Recombinant Escherichia coli

  • Seo, Myung-Ji;Im, Eun-Mi;Nam, Jung-Yeon;Kim, Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1045-1048
    • /
    • 2007
  • Two genes, dps encoding decaprenyl diphosphate synthase and dxs encoding 1-deoxy-D-xylulose 5-phosphate synthase, were isolated from Rhizobium radiobacter ATCC 4718. DNA sequencing analysis of the dps and dxs genes revealed an open reading frame of 1,077 bp and 1,920 bp, respectively. The heterologous expression in Escherichia coli BL21(DE3) was carried out in order to identify their functions. Recombinant E. coli BL21(DE3) harboring the dps gene produced $CoQ_{10}$ as well as $CoQ_8$ and $CoQ_9$, whereas E. coli harboring only the dxs gene produced more $CoQ_8$ compared with the wild-type E. coli. Additionally, the coexpression of dps and dxs genes in E. coli was carried out. The recombinant E. coli harboring only the dps gene produced $0.21{\pm}0.04\;mg/l$ of $CoQ_{10}$, whereas the coexpressed E. coli with dps and dxs genes produced $0.37{\pm}0.07\;mg/l$ of $CoQ_{10}$. HPLC analysis also showed that the $CoQ_{10}$ fraction (100% of the total CoQs distribution) was increased from $15.86{\pm}0.66%$ (only dps) to $29.78{\pm}1.80%$ (dps and dxs).

Molecular Cloning and Co-Expression of Phytoene Synthase Gene from Kocuria gwangalliensis in Escherichia coli

  • Seo, Yong Bae;Choi, Seong-Seok;Lee, Jong Kyu;Kim, Nan-Hee;Choi, Mi Jin;Kim, Jong-Myoung;Jeong, Tae Hyug;Nam, Soo-Wan;Lim, Han Kyu;Kim, Gun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1801-1809
    • /
    • 2015
  • A phytoene synthase gene, crtB, was isolated from Kocuria gwangalliensis. The crtB with 1,092 bp full-length has a coding sequence of 948 bp and encodes a 316-amino-acids protein. The deduced amino acid sequence showed a 70.9% identity with a putative phytoene synthase from K. rhizophila. An expression plasmid, pCcrtB, containing the crtB gene was constructed, and E. coli cells containing this plasmid produced the recombinant protein of approximately 34kDa , corresponding to the molecular mass of phytoene synthase. Biosynthesis of lycopene was confirmed when the plasmid pCcrtB was co-transformed into E. coli containing pRScrtEI carrying the crtE and crtI genes encoding lycopene biosynthetic pathway enzymes. The results obtained from this study will provide a base of knowledge about the phytoene synthase of K. gwangalliensis and can be applied to the production of carotenoids in a non-carotenoidproducing host.

New Haplotypes of the ATP Synthase Subunit 6 Gene of Mitochondrial DNA are Associated with Acute Lymphoblastic Leukemia in Saudi Arabia

  • Yacoub, Haitham Ahmed;Mahmoud, Wael Mahmoud;El-Baz, Hatim Alaa-Eldeen El-Din;Eid, Ola Mohamed;El-Fayoumi, Refaat Ibrahim;Mahmoud, Maged Mostafa;Harakeh, Steve;Abuzinadah, Osama H.A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10433-10438
    • /
    • 2015
  • Background: Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children and represents approximately 25% of cancer diagnoses among those younger than 15 years of age. Aim and Objectives: This study investigated substitutions in the ATP synthase subunit 6 gene of mitochondrial DNA (mtDNA) as a potential diagnostic biomarker for early detection and diagnosis of acute lymphoblastic leukemia. Based on mtDNA from 23 subjects diagnosed with acute lymphoblastic leukemia, approximately 465 bp of the ATP synthase subunit 6 gene were amplified and sequenced. Results: The sequencing revealed thirty-one mutations at 14 locations in ATP synthase subunit 6 of mtDNA in the ALL subjects. All were identified as single nucleotide polymorphisms (SNPs) with a homoplasmic pattern. The mutations were distributed between males and females. Novel haplotypes were identified in this investigation: haplotype (G) was recorded in 34% in diagnosed subjects; the second haplotype was (C) with frequency of 13% in ALL subjects. Neither of these were observed in control samples. Conclusions: These haplotypes were identified for the first time in acute lymphoblastic leukemia patients. Five mutations able to change amino acid synthesis for the ATP synthase subunit 6 were associated with acute lymphoblastic leukemia. This investigation could be used to provide an overview of incidence frequency of acute lyphoblastic leukemia (ALL) in Saudi patients based on molecular events.

Expressed Protein Ligation of 5-Enolpyruvylshikimate-3-phosphate (EPSP) Synthase: An Application to a Protein Expressed as an Inclusion Body

  • Kim, Hak-Jun;Shin, Hee-Jae;Kim, Hyun-Woo;Kang, Sung-Ho;Kim, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2303-2309
    • /
    • 2007
  • Expressed protein ligation (EPL) technique, joining recombinantly expressed proteins to polypeptides, has been widely adopted for addressing various biological questions and for drug discovery. However, joining two recombinant proteins together is sometimes difficult when proteins are expressed insoluble and unrefoldable, because ligation-active proteins via intein-fusion are obtainable when they are folded correctly. We overcame this limitation coexpressing target protein with additional methionine aminopeptidase (MAP) which enhances removal of the initiation methionine of recombinantly expressed protein. Our approach demonstrated that two domains of 46 kDa 5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase, a target of herbicide glyphosate, were successfully joined by native chemical ligation, although its C-terminal domain was expressed as an inclusion body. The intein-fused N-terminal fragment of EPSP synthase (EPSPSN, residues 1-237) was expressed and the ligation-active thioester tagged N-terminal fragment (EPSPSN-thioester) was purified using a chitin affinity chromatography and mercapto-ethanesulphonate (MESNA) as intein thiolysis reagent. Its Cterminal fragment (EPSPSC, residues Met237-238CYS-427), expressed as an inclusion body, was prepared from an additional MAP-expressing strain. Protein ligation was initiated by mixing ~1 mM of EPSPSN-thioester with ~2 mM of EPSPSCCYS (residues 238CYS-427). Also we found that addition of 2% thiophenol increased the ligation efficiency via thiol exchange. The ligation efficiency was ~85%. The ligated full-length EPSP synthase was dissolved in 6 M GdHCl and refolded. Circular dichroism (CD) and enzyme activity assay of the purified protein showed that the ligated enzyme has distinct secondary structure and ~115% specific activity compared to those of wild-type EPSP synthase. This work demonstrates rare example of EPL between two recombinantly expressed proteins and also provides hands-on protein engineering protocol for large proteins.

Actinodura roseorufa에서 생산되는 UK-58,852로부터 PKS type I 에 관련된 생합성 유전자의 분리 및 분석

  • Kim, Ja-Yong;Lee, Ju-Ho;Kim, Dae-Hui;Kim, Dong-Hyeon;Song, Jae-Gyeong;Lee, Hui-Chan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.660-664
    • /
    • 2000
  • To clone genes related UK-58,852 production, genomic DNA of strain Actinodura roseorufa was used for the construction of genomic library using pOJ446 cosmid vector. The genomic library was screened rising dehydratase PCR product and eryA gene as a DNA hybridization probe. pHD54 was isolated, which contained an approximately 35kb of inserted DNA. BamHI, SmaI and sonicater fragments hybridized to eryA probe. All of pHD54 BgmHI, SmaI and sonicater fragments were subcloned into pGEM7 and some fragments which hybridized to eryA probe were sequenced. The nucleotide sequence was analysed using BLAST program. The sequence identities were observed in KS,AT, KR, ER and PKS loading domains. Also oxidoreductase showed similarity to rifamycin module10, and dTDP-D-glucose 4,6 dehydratase and TDP-D-glucose synthase involved in biosynthesis of sugar showed similarity to Streptomyces argillaceus.

  • PDF

Expression in Escherichia coli of a Putative Human Acetohydroxyacid Synthase

  • Duggleby, Ronald G.;Kartikasari, Apriliana E.R.;Wunsch, Rebecca M.;Lee, Yu-Ting;Kil, Mee-Wha;Shin, Ju-Young;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.195-201
    • /
    • 2000
  • A human gene has been reported that may encode the enzyme acetohydroxyacid synthase. Previously this enzyme was thought to be absent from animals although it is present in plants and many microorganisms. In plants, this enzyme is the target of a number of commercial herbicides and the use of these compounds may need to be reassessed if the human enzyme exists and proves to be susceptible to inhibition. Here we report the construction of several plasmid vectors containing the cDNA sequence for this protein, and their expression in Escherichia coli. High levels of expression were observed, but most of the protein proved to be insoluble. The small amounts of soluble protein contained little or no acetohydroxyacid synthase activity. Attempts to refold the insoluble protein were successful insofar as the protein became soluble. However, the refolded protein did not gain any acetohydroxyacid synthase activity. In vivo complementation tests of an E. coli mutant produced no evidence that the protein is active. Incorrect folding, or the lack of another subunit, may explain the data but we favor the interpretation that this gene does not encode an acetohydroxyacid synthase.

  • PDF

Interacting Domain Between Yeast Chitin Synthase 3 and Chitin Synthase 4 is Involved in Biogenesis of Chitin Ring, but not for Cell Wall Chitin

  • Choi, Shin-Jung;Park, Nok-Hyun;Park, Hyun-Sook;Park, Mee-Hyun;Woo, Jee-Eun;Choi, Won-Ja
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.263-268
    • /
    • 2003
  • Recently, we identified a domain, termed MIRC3-4, for the protein-protein interaction between yeast chitin synthase 3 (CHS3) and chitin synthase 4 (CHS4). In this study, the functional roles of MIRC3-4 were examined at the G1 phase and cytokinesis of the cell cycle by Calcofluor staining and FISH. Some mutations in MIRC3-4 resulted in disappearance of the chitin ring in the early G1 phase, but did not affect chitin synthesis in the cell wall at cytokinesis. The chitin distribution in chs4 mutant cells indicated that CHS4 was involved in the synthesis of chitinring in the G1 phase and in the synthesis of cell wall chitin after cytokinesis, suggesting that Chs4p regulates chitin synthase 3 activity differently in G1 and cytokinesis. Absence of the chitin ring could be caused either by delocalization of Chs3p to the bud-neck or by improper interaction with Chs4p. When mutant cells were immunostained with a Chs3p-specific antibody to discriminate between these two alternatives, the mutated Ch3p was found to localize to the neck in all MIRC3-4 mutants. These results strongly irdicate that Chs4p regulates Chs3p as an activator but not a recruiter.

Inhibitory Effects of Resveratrol and Piceid against Pathogens of Rice Plant, and Disease Resistance Assay of Transgenic Rice Plant Transformed with Stilbene Synthase Gene

  • Yu, Sang-Mi;Lee, Ha Kyung;Jeong, Ui-Seon;Baek, So Hyeon;Noh, Tae-Hwan;Kwon, Soon Jong;Lee, Yong Hoon
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Resvestrol has been known to inhibit bacterial and fungal growth in vitro, and can be accumulated in plant to concentrations necessary to inhibit microbial pathogens. Hence, stilbene synthase gene has been used to transform to synthesize resveratrol in heterologous plant species to enhance resistance against pathogens. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. In addition, disease resistance was compared between transgenic rice varieties, Iksan 515 and Iksan 526 transformed with stlibene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong. Minimum inhibitory concentration of resveratrol for Burkolderia glumae was 437.5 ${\mu}M$, and the mycelial growth of Biplaris oryzae was slightly inhibited at concentration of 10 ${\mu}M$. However, other bacterial and fungal pathogens are not inhibited by resveratrol and piceid. The expression of the stilbene synthase gene in Iksan 515 and Iksan 526 did not significantly enhanced resistance against bacterial grain rot, bacterial leaf blight, sheath blight, and leaf blight. This study is the first report on the effect of resveratrol and piceid against pathogens of rice plant, and changes of disease resistance of transgenic rice plants transformed with stilbene synthase gene.