• Title/Summary/Keyword: synechocystis PCC 6803

Search Result 55, Processing Time 0.026 seconds

Effects of Some Metabolic Inhibitors on Phototactic Movement in Cyanobacterium Synechosystis sp. PCC 6803 PTX (람세균 Synechocystis sp. PCC 6803 PTX의 주광성 운동에 미치는 몇가지 대사 억제제의 효과)

  • 박영총
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.87-93
    • /
    • 1995
  • For understanding physiological nature of phototaxis in Synechocystis sp. PCC 6803 PTX(S. 6803 PTX), we examined the effects of some metabolic inhibitors and cation ionophore on the phototactic movement. In the presence of DCMU, which blocks the photosynthetic electron transport just after photosystem II acceptor, there was no inhibitory effect on the phototaxis up to $100\;\mu\textrm{M}$. Instead, the respiratory electron chain inhibitor such as sodium azide dramatically impaired the phototaxis in S. 6803 PTX. These observations indicate that the phototaxis is linked not to photo-phosphorylation, but to respiratory phosphorylation. When the cells were treated with un couplers such as CCCP or DNP, which dissipate the electrochemical gradient of proton($\Delta\mu_{H}+$) across the cytoplasmic membrane, these chemicals did not affect phototaxis. In contrast, when cells were treated with DCCD or NBD which deprive cells of A TP but leave $\Delta\mu_{H}+$ intact across the membrane, the phototactic movement was severly reduced. These results imply that ATP production, not proton motive force, is involved in the phototactic movement in this organism as a driving motive force. The application of specific calcium ionophore A23187 strongly impaired positive phototaxis. Calcium fluxes should be engaged in the sensory trans-duction of phototactic orientation. Finally, when ethionine was supplimented to culture media, the photomovement of this organism was inhibited. This implies that methylation/demethylation mechanism controls the process of phototaxis in S. 6803 PTX like chemotaxis in E. coli and Salmonella typhimurium.murium.

  • PDF

Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진)

  • Kim Soo-Youn;Choi Gang Guk;Park Youn Il;Park Young Mok;Yang Young Ki;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • Photoautotrophic bacteria are promising candidates for the production of poly(3-hydroxybutyrate) (PHB) since they can address the critical problem of substrate costs. In this study, we isolated 25 Tn5-inserted mutants of the Synechocystis sp. PCC 6803 which showed enhanced PHB accumulation compared to the wild-type strain. After 5-days cultivation under nitrogen-limited mixotrophic conditions, the intracellular levels of PHB content in these mutants reached up to $10-30\%$ of dry cell weight (DCW) comparable to $4\%$ of DCW in the wild-type strain. Using the method of inverse PCR, the affected genes of the mutants were mapped on the completely known genome sequence of Synechocystis sp. PCC 6803. As a result, the increased PHB accumulation in 5 mutants were found to be resulted from defects of genes coding for NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase, photosystem II PsbT protein or histidine kinase, which are involved in photosystem in thylakoid inner membrane of the cell. The values of $NAD(P)H/NAD(P)^+$ ratio in the cells of these mutants were much higher than that of the wild-type strain as measured by using pulse-amplitude modulated fluorometer, suggesting that PHB synthesis could be enhanced by increasing the level of cellular NAD(P)H which is a limiting substrate for NADPH-dependent acetoacetyl-CoA reductase. From these results, it is likely that NAD(P)H would be a limiting factor for PHB synthesis in Synechocystis sp. PCC 6803.

Sll0396 regulates transcription of the phycocyanin genes in Synechocystis sp. PCC 6803

  • Oh, In-Hye;Kim, Ho-San;Chung, Young-Ho;Kim, Young-Hye;Park, Young-Mok
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.193-199
    • /
    • 2010
  • An olive-green mutant was generated in Synechocystis sp. strain PCC 6803 by inactivation of the sll0396 gene. Whole-cell absorption spectra of the mutant revealed the missing of phycocyanin peak. An investigation of the low-temperature fluorescence emission spectra revealed that the $sll0396{\Omega}$ mutant has a reduced amount of phycocyanin. Western blot analysis showed that the mutant contained less phycocyanin ${\beta}$- and ${\alpha}$-subunits and lacked the 30- and 32-kDa linker polypeptides, and northern blot analysis revealed that the transcription of the 1.4-kb cpcBA gene encoding the phycocyanin ${\beta}$- and ${\alpha}$-subunits was lower in the mutant. The Sll0396 protein has a DNA-binding motif and shares homology with known response regulators. Our results indicate that Sll0396 plays a regulatory role in the transcription of the phycocyanin genes during phycobilisome synthesis.

Characterization of Spermidine Transport System in a Cyanobacterium, Synechocystis sp. PCC 6803

  • Raksajit, Wuttinun;Yodsang, Panutda;Maenpaa, Pirkko;Incharoensakdi, Aran
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.447-454
    • /
    • 2009
  • The transport of spermidine into a cyanobacterium, Synechocystis sp. pec 6803, was characterized by measuring the uptake of $^{14}C$-spermidine. Spermidine transport was shown to be saturable with an apparent affinity constant ($K_m$) value of $67{\mu}M$ and a maximal velocity ($V_{max}$) value of 0.45 nmol/min/mg protein. Spermidine uptake was pH-dependent with the pH optimum being 8.0. The competition experiment showed strong inhibition of spermidine uptake by putrescine and spermine, whereas amino acids were hardly inhibitory. The inhibition kinetics of spermidine transport by putrescine and spermine was found to be noncompetitive with $K_i$ values of 292 and $432{\mu}M$, respectively. The inhibition of spermidine transport by various metabolic inhibitors and ionophores suggests that spermidine uptake is energy-dependent. The diminution of cell growth was observed in cells grown at a high concentration of NaCl. Addition of a low concentration of spermidine at 0.5 mM relieved growth inhibition by salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased spermidine transport with about 30-40% increase at 10 mosmol/kg upshift.

Identification of a Glucokinase that Generates a Major Glucose Phosphorylation Activity in the Cyanobacterium Synechocystis sp. PCC 6803

  • Lee, Jung-Mi;Ryu, Jee-Youn;Kim, Hyong-Ha;Choi, Sang-Bong;de Marsac, Nicole Tandeau;Park, Youn-Il
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.256-261
    • /
    • 2005
  • In silico analysis of genome of the cyanobacterium Synechocystis sp. PCC 6803 identified two genes, slr0329 and sll0593, that might participate in glucose (Glc) phosphorylation (www.kazusa.or.jp/cyano). In order to determine the functions of these two genes, we generated deletion mutants, and analyzed their phenotypes and enzymatic activities. In the presence of 10 mM Glc, wild-type (WT) and slr0329 defective strain (M1) grew fast with increased respiratory activity and NADPH production, whereas the sll0593 deletion mutant (M2) failed to show any of the Glc responses. WT and M1 were not significantly different in their glucokinase activity, but M2 had 90% less activity. Therefore, we propose that Sll0593 plays a major role in the phosphorylation of glucose in Synechocystis cells.

Functional Characterization of sll1556 of Synechocystis sp. PCC6803 as Type II Isopentenyl Diphosphate Isomerase (Type II Isopentenyl Diphosphate Isomerase로서 Synechocystis sp. PCC6803의 sll1556의 작용 특성)

  • Cho, Kab-Yeon
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.526-530
    • /
    • 2010
  • Isopentenyl diphosphate(IPP) isomerization to dimethylallyl diphosphate(DMAPP) is an important step for the efficient production of isoprenoids such as lycopene, ${\beta}$-carotene, astaxanthin, etc. The type II isopentenyl diphosphate isomerase gene from Synechocystis sp. PCC6803(sll1556, Syidi2) was cloned and expressed in Escherichia coli $DH5{\alpha}$. When E. coli $DH5{\alpha}$ harboring lycopene synthesis genes, crtE, crtB, and crtI and mevalonate pathway genes, MvK1, MvK2, and Mvd, was cultured on LB medium containing mevalonate, the strain grew very slowly be due to the toxicity of isopentenyl diphosphate derived from mevalonate. When Syidi2 was introduced to E. coli $DH5{\alpha}$ harboring the lycopene synthesis genes and mevalonate pathway genes, growth on mevalonate medium was fully restored and the colony showed red color indicating lycopene formation. The growth rate of the mutant strain, E. coli $DH5{\alpha}$(idi::${\Delta}km$), was very slow because of IPP accumulation and DMAPP deprivation. Ultimately the idi mutant was complemented by introducing the Syidi2 gene.