• 제목/요약/키워드: symbols in mathematics

검색결과 137건 처리시간 0.021초

GENERALIZED SOBOLEV SPACES OF EXPONENTIAL TYPE

  • Lee, Sungjin
    • Korean Journal of Mathematics
    • /
    • 제8권1호
    • /
    • pp.73-86
    • /
    • 2000
  • We study the Sobolev spaces to the generalized Sobolev spaces $H^s_{\mathcal{G}}$ of exponential type based on the Silva space $\mathcal{G}$ and investigate its properties such as imbedding theorem and structure theorem. In fact, the imbedding theorem says that for $s$ > 0 $u{\in}H^s_{\mathcal{G}}$ can be analytically continued to the set {$z{\in}\mathbb{C}^n{\mid}{\mid}Im\;z{\mid}$ < $s$}. Also, the structure theorem means that for $s$ > 0 $u{\in}H^{-s}_{\mathcal{G}}$ is of the form $$u={\sum_{\alpha}\frac{s^{{|\alpha|}}}{{\alpha}!}D^{\alpha}g{\alpha}$$ where $g{\alpha}$'s are square integrable functions for ${\alpha}{\in}\mathbb{N}^n_0$. Moreover, we introduce a classes of symbols of exponential type and its associated pseudo-differential operators of exponential type, which naturally act on the generalized Sobolev spaces of exponential type. Finally, a generalized Bessel potential is defined and its properties are investigated.

  • PDF

2009년 개정 교육과정에 따른 중학교 1학년 수학교과서의 함수 단원 학습과제 분석: 융복합목표.방식.맥락에서의 접근 (The Didactical Organization of Mathematical Function in Korean Mathematics Textbooks: From the Perspective of Yungbokhap Education)

  • 박모라;주미경;문종은
    • 대한수학교육학회지:학교수학
    • /
    • 제16권1호
    • /
    • pp.135-155
    • /
    • 2014
  • 본 연구에서는 2009년 개정 수학과 교육과정에 따른 중학교 1학년 인정 수학교과서 13종의 함수단원 학습과제를 융복합 목표, 융복합 방식, 융복합 맥락 차원에서 양적 분석함으로써 그 특징과 차원 간의 관련성을 탐색하였다. 분석 결과 중학교 1학년 수학교과서 함수단원의 학습과제는 융복합 목표와 관련해서는 도구의 상호작용적 역량, 융복합 방식에서는 단학문적 방식, 융복합 맥락 차원에서는 개인적 맥락을 가장 많이 포함하고 있는 것으로 나타났다. 이는 융복합교육적 요소를 포함하고는 있지만 도입의 수준 측면에서 매우 제한적임을 보여주는 결과이다. 이와 같은 분석 결과는 다양한 융복합교육 요소를 포함할 수 있는 학습과제의 개발이 필요함을 시사한다.

  • PDF

삼성신화에 나타난 수 3과 삼분구조에 관한 고찰 (On the number three and the structure of trisection in the Samsung myth)

  • 양영오
    • 한국수학사학회지
    • /
    • 제19권3호
    • /
    • pp.57-70
    • /
    • 2006
  • 본 논문에서는 종교, 세계관, 자연세계 등에서 수 3의 의미와 상징성, 삼분구조, 그리고 양 고 부 삼성(三姓)이 건국하였다는 탐라개국신화인 삼성신화(三姓神話)에서 나타난 수 3의 의미와 삼분구조를 살펴보고자 한다.

  • PDF

재귀적 패턴과 거북 마이크로월드 설계 (Designing a Microworld for Recursive Pasterns and Algebra)

  • 김화경
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제45권2호
    • /
    • pp.165-176
    • /
    • 2006
  • In this paper, we consider changes of algebra strands around the world. And we suggest needs of designing new computer environment where we make and manipulate geometric recursive patterns. For this purpose, we first consider relations among symbols, meanings and patterns. And we also consider Logo environment and characterize algebraic features. Then we introduce L-system which is considered as action letters and subgroup of turtle group. There are needs to be improved since there exists some ambiguity between sign and action. Based on needs of improving the previous L-system, we suggest new commands in JavaMAL microworld. So we design a microworld for recursive patterns and consider meanings of letters in new environments. Finally, we consider the method to integrate L-system and other existing microworlds, such as Logo and DGS. Specially, combining Logo and DGS, we consider the movement of such tiles and folding nets by L-system commands. And we discuss possible benefits in this environment.

  • PDF

확률 영역에서의 독립성, 그 직관적 개념과 형식적 정의의 갈등 (Independence in probability, The conflicts between its intuitive concept and formal definition)

  • 조차미;박종률
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권3호
    • /
    • pp.373-386
    • /
    • 2008
  • In highschool probability education, this study analyzed conflicts between intuitive concept and formal definition which originates from the process of establishing the concept of statistical independence. In judging independence, completely different types of problems requiring their own approach was analyzed by dividing them into two types. By doing so, this study researched a way to view independence as an overall idea. That is purposed to suggest a solution to a conflicts between intuitive concept and formal definition and to help not to judge independence out of wrong intuition. This study also suggests that calculation process which leads to precise perception of sample space and event be provided when we prove independence by expressing events with assembly symbols.

  • PDF

오일러 알고리즘의 안내된 재 발명 -RME 기반 미분 방정식 수업에서 점진적 수학화 과정 분석- (Guided Reinvention of Euler Algorithm: -An Analysis of Progressive Mathematization in RME-Based Differential Equations Course-)

  • 권오남;주미경;김영신
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제42권3호
    • /
    • pp.387-402
    • /
    • 2003
  • Realistic Mathematics Education (RME) focuses on guided reinvention through which students explore experientially realistic context problems to develop informal problem solving strategies and solutions. This research applied this philosophy of RME to design a differential equation course at a university level. In particular, the course encouraged the students of the course to use numerical methods to solve differential equations. In this context, the purpose of this research was to describe the developmental process in which the students constructed and reinvented Euler algorithm in the class. For the purpose, this paper will present the didactical principle of RME and describe the process of developmental research to investigate the inferential process of students in solving the first order differential equation numerically. Finally, the qualitative analysis of the students' reasoning and use of symbols reveals how the students reinvent Euler algorithm under the didactical principle of guided reinvention. In this research, it has been found that the students developed deep understanding of Euler algorithm in the class. Moreover, it has been shown that the experience of doing mathematics in the course had a positive impact on students' mathematical belief and attitude. These findings imply that the didactical principle of RME can be applied to design university mathematical courses and in general, provide a perspective on how to reform mathematics curriculum at a university level.

  • PDF

현행 중학교 수학 교과서와 MathThematics 교과서의 비교 분석 - 수학적 의사소통 측면을 중심으로 - (A comparative analysis of the MathThematics textbooks with Korean middle school mathematics textbooks - focused on mathematical communication -)

  • 한혜숙
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제49권4호
    • /
    • pp.523-540
    • /
    • 2010
  • The purpose of the study were to analyze MathThematics textbooks and Korean middle school mathematics and to investigate the difference among the textbooks in the view of mathematical communication. According to the results, the textbook developers made a variety of efforts to develope students' mathematical communication ability. Students were encouraged to communicate with others about their mathematical ideas or problem solving processes in words or writing by means of discussion, oral report, presentation, journal, etc. MathThematics textbooks provided student self-assessment opportunity to improve student performance in problem solving, reasoning, and communication. In communication assessment, students can assess their use of mathematical vocabulary, notation, and symbols, the use of graphs, tables, models, diagrams and equation to solve problem and their presentation skills. The assessment activities would make a positive impact on the development of students' mathematical communication ability. MathThematics textbooks provided a variety of problem situation including history, science, sports, culture, art, and real world as a topic for communication, however, the researcher found that some of Korean textbooks depends heavily on mathematical problem situations.

우리나라 초등학교 수학 교과서에서 제시하는 좌변이 단항식인 등식의 양태 분석 (An Analysis on Aspects of Equalities with Monomial Left-hand Side Presented in Korean Elementary School Mathematics Textbooks)

  • 고준석;최종현;이승은;박교식
    • 한국초등수학교육학회지
    • /
    • 제20권4호
    • /
    • pp.583-599
    • /
    • 2016
  • 본 논문에서는, 식을 구성하는 요소에 초점을 맞추어 교과서에서 제시하는 좌변이 단항식인 등식의 양태를 분석하고 있다. 이에 따르면, 교과서에서는 좌변이 단항식인 등식을 체계적으로 도입 취급하기 보다는 학생들이 이미 알고 있는 것처럼 취급하고 있다. 본 논문에서는 이러한 분석을 바탕으로 다음 네 가지 제언을 결론으로 제시한다. 첫째, A형 등식(우변에 1종류의 계산 기호와 2개 이상의 수 또는 변수 또는 명수가 있는 등식)과 B형 등식(우변에 2종류 이상의 계산 기호와 3개 이상의 수 또는 변수 또는 명수가 있는 등식)을 명시적인 설명에 의해 도입할 필요가 있다. 둘째, 숫자식, ${\Box}$(빈칸)이 있는 식, 단어가 있는 식, ${\Box}$(변수)가 있는 식, 문자식의 취급 순서를 명확히 설정할 필요가 있다. 셋째, 좌변이 단항식인 등식이 다양한 의미로 사용된다는 것에 주목하게 할 필요가 있다. 넷째, 좌변이 단항식인 등식을 구성하는 수의 범위를 분수, 소수까지 넓힐 필요가 있다.

수학사를 활용한 수학수업이 수학과 학습 태도에 미치는 영향

  • 유금순;남영만
    • East Asian mathematical journal
    • /
    • 제28권4호
    • /
    • pp.383-401
    • /
    • 2012
  • The purpose of mathematics education includes two important areas; cognitive area that emphasizes mathematical knowledge and understanding and affective area that stresses mathematical interest and attitude. The purpose of mathematics education is not only in acquiring the contents and knowledge but also rousing up interest and attention toward mathematics. Therefore, effort to accomplish this affective purpose has to be made. Introducing history of mathematics to teaching can be a important method for the students to arouse interest and attention toward mathematics. History of mathematics can help the students who are familiar to only manipulation of the symbols to develop a new way of thinking and mathematical thoughts arousing reflective thinking. According to the survey, although the effect of using mathematics history has been recognized, the mathematics history has neither been developed as teaching materials nor reflected in the courses of study. The purpose of this research is to develop the reading materials into suit for the mathematics curriculum to extract contents of the mathematics valuable in using in elementary mathematics teaching, and to investigate the effect of reading materials using the history of mathematics on learning attitude in elementary school. The way of developing materials in this study is as follows. First, to select the interesting and instructive subject for the elementary students such as the story and life of a mathematician, developmental stages of mathematical theory and calculation currently used and finding the patterns of the rules that requires mathematical thoughts. Second, to classify the selected items according to mathematics curriculum. Third, to reorganize the classified items of the appropriate grade with the reading materials of dialogue pattern in order to draw attention and interest from the students I developed 18 kinds materials in accordance with the above procedure and applied 5 materials among them to one class in 4th grade. Analysing the student's responses, First, using history of mathematics helps the students to arouse interest and confidence on mathematical learning attitude. And the students became better attitude of studying by oneself and attention on class. Second, as know by opinions after lesson, most students have a chance refresh one's thinking of mathematics, want to know the other content of history of mathematics and responded to study hard in mathematics. As a result, the reading materials on the basis of the history of mathematics motivates students for mathematics and helps them become confident in mathematics. If the materials are complemented properly, they will be useful and effective for students and teachers.

수학 서술형 평가의 어려움과 지도 방안: 고교 1학년 노력형 학생의 쓰기 활동 사례 연구 (Student difficulties in constructed-response mathematics assessments: A case study of writing activities for low-performing first-year high school students )

  • 배미희;임웅
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권1호
    • /
    • pp.1-18
    • /
    • 2024
  • 본 연구는 고등학교 1학년 노력형 학생들이 (1) 수학 서술형 평가에서 보이는 어려움에 대한 분석과 (2) 이를 극복하기 위한 쓰기 활동 지도 방안을 탐구하고자 하였다. 이를 위해 서술형 문항으로 이루어진 검사를 수행한 후 검사 결과를 바탕으로 학생들과 면담을 진행하고, 15회에 걸쳐 수학 노트 쓰기 활동을 지도하였다. 연구 결과에 따르면 학생들은 서술형 평가에서 20가지의 어려움을 보였다. 이를 '수학적 어려움'과 '서술형 어려움' 등 2가지 범주로 분류한 결과 수학이라는 과목 특성에서 보이는 어려움은 수학 개념과 원리의 이해 부족, 수학 기호 사용의 어려움, 문장제 문항에 대한 어려움, 수학에 대한 고정관념에서 오는 어려움이 있었다. 서술형 문항이라는 특성에서 보이는 학생의 어려움은 객관식 문항과는 다른 평가 방법에서 오는 어려움, 서술형 문항의 풀이 과정 기술의 어려움, 기타 심리적인 어려움이 있었다. 노력형 학생들이 서술형 평가에서 보이는 어려움을 극복할 수 있는 학습전략의 일환으로 개별 수학 노트 쓰기 활동을 지도하였고 (1) 수학적 개념의 내면화, (2) 관계적 이해를 통한 정당화, (3) 다양한 풀이 시도, (4) 수학적 기호 사용, (5) 반성적 사고, (6) 심리적 방해 요소 극복으로 범주화하고 지도 과정 및 효과에 대하여 정리하였다.