• Title/Summary/Keyword: symbiotic bacterium

Search Result 44, Processing Time 0.021 seconds

A NEW BIOPOLYMER FOR REFRESHMENT

  • Bozou, J.C.;Gautry, L.;Pianelli, G.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.480-490
    • /
    • 2003
  • An innovative biopolymer known as the Rhizobian gum has been developed in France, which shows some dramatic refreshing effect on the skin. The origin of this innovative project takes its source in the natural environment, and in particular the natural environment of the roots of sunflowers and wheat, where a symbiotic bacterium has been discovered. It is a Rhizobium bacterium, which is hosted by the roots, and which is able to synthesize a specific polymer showing a dramatic water binding capacity. This polymer is in particular synthesized in period of drought, and its biological role is to concentrate the small amount water present in the soil in order to take it available for the root, which becomes then able to absorb it. This vital mechanism allows the plant to survive despite a severe climatic environment. This basic research has been conducted in collaboration whit the French National centre of scientific Research (CNRS), and has lead to the isolation of the Rhizobium bacteria. Rhizobian gum is a branched biopolymer consisting in the repetition of a polysaccharide unit of 3 molecules of glucose, 3 molecules of galactose and 1 molecule of glucuronic acid, whit one pyruvate group an average 1.6 acetyl groups. The fresh effect of Rhizobian gum is a strong sensorial impact that 100 % of the consumers are able to perceive, and which is judged very pleasant by most of them. In addition to this, a large majority of consumers are perceived, and which is judge very pleasant by most of them. In addition to this, a large majority of consumers also feel a very pleasant relaxing sensation. Smoothness and softness are also felt by most consumers and qualified positively by most of them. These qualities guarantee a strong impact on today's consumers.

  • PDF

A NEW BIOPOLYMER FOR REFRESHMENT

  • Bozou, J.C.;Gautry, L.;Pianelli, G.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.50-60
    • /
    • 2003
  • An innovative biopolymer known as the Rhizobian gum has been developed in France, which shows some dramatic refreshing effect on the skin. The origin of this innovative project takes its source in the natural environment, and in particular the natural environment of the roots of sunflowers and wheat, where a symbiotic bacterium has been discovered. It is a Rhizobium bacterium, which is hosted by the roots, and which is able to synthesize a specific polymer showing a dramatic water binding capacity. This polymer is in particular synthesized in period of drought, and its biological role is to concentrate the small amount water present in the soil in order to take it available for the root, which becomes then able to absorb it. This vital mechanism allows the plant to survive despite a severe climatic environment. This basic research has been conducted in collaboration whit the French National centre of scientific Research (CNRS), and has lead to the isolation of the Rhizobium bacteria. Rhizobian gum is a branched biopolymer consisting in the repetition of a polysaccharide unit of 3 molecules of glucose, 3 molecules of galactose and 1 molecule of glucuronic acid, whit one pyruvate group an average 1.6 acetyl groups. The fresh effect of Rhizobian gum is a strong sensorial impact that 100 % of the consumers are able to perceive, and which is judged very pleasant by most of them. In addition to this, a large majority of consumers are perceived, and which is judge very pleasant by most of them. In addition to this, a large majority of consumers also feel a very pleasant relaxing sensation. Smoothness and softness are also felt by most consumers and qualified positively by most of them. These qualities guarantee a strong impact on today's consumers.

  • PDF

Shoot Induction and Genetic Stability of in vitro Cultured Pea

  • Kantayos, Vipada;Bae, Chang-Hyu
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.30-30
    • /
    • 2019
  • Pea (Pisum sativum) is one of important legume crops in the world. It is commonly used as a protein source for animal and human diet, and also used as a natural nitrogen source which is produced by a symbiotic bacterium in their root nodule and helpful for terrestrial ecosystem. The successful in vitro manipulation is depended on three main factors including physiology of plant donor, in vitro manipulation approach, and stress physiology during plant cultivation. Moreover, genotype is an important for plant manipulation; different genotype gives the different response to regeneration efficiency. An efficient condition of shoot induction for pea (Pisum sativum cv. 'Sparkle') was developed by using optimum explant, plant growth regulator concentrations, and pretreatment of BA onto explant. The average shoot number per explant showed the highest on two kinds of shoot induction media (MSB5 media containing 2 mg/L BA and a combination of 2 mg/L BA and 1 mg/L TDZ) with cotyledonary node explants culture. Moreover, the pretreatment of explant in 200 mg/L BA solution was found to be more effective in shoot induction than that of non-pretreatment. The analysis of genetic stability of regenerants by using 13 ISSR markers presented that in vitro regenerated plants showed polymorphism with 8.3% compared with their mother plants.

  • PDF

Novel Alkali-Tolerant GH10 Endo-${\beta}$-1,4-Xylanase with Broad Substrate Specificity from Microbacterium trichothecenolyticum HY-17, a Gut Bacterium of the Mole Cricket Gryllotalpa orientalis

  • Kim, Do Young;Shin, Dong-Ha;Jung, Sora;Kim, Hyangmi;Lee, Jong Suk;Cho, Han-Young;Bae, Kyung Sook;Sung, Chang-Keun;Rhee, Young Ha;Son, Kwang-Hee;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.943-953
    • /
    • 2014
  • The XylH gene (1,167-bp) encoding a novel hemicellulase (41,584 Da) was identified from the genome of Microbacterium trichothecenolyticum HY-17, a gastrointestinal bacterium of Gryllotalpa orientalis. The enzyme consisted of a single catalytic domain, which is 74% identical to that of an endo-${\beta}$-1,4-xylanase (GH10) from Isoptericola variabilis 225. Unlike other endo-${\beta}$-1,4-xylanases from invertebrate-symbiotic bacteria, rXylH was an alkali-tolerant multifunctional enzyme possessing endo-${\beta}$-1,4-xylanase activity together with ${\beta}$-1,3/${\beta}$-1,4-glucanase activity, which exhibited its highest xylanolytic activity at pH 9.0 and 60oC, and was relatively stable within a broad pH range of 5.0-10.0. The susceptibilities of different xylosebased polysaccharides to the XylH were assessed to be as follows: oat spelts xylan > beechwood xylan > birchwood xylan > wheat arabinoxylan. rXylH was also able to readily cleave p-nitrophenyl (pNP) cellobioside and pNP-xylopyranoside, but did not hydrolyze other pNP-sugar derivatives, xylobiose, or hexose-based materials. Enzymatic hydrolysis of birchwood xylan resulted in the product composition of xylobiose (71.2%) and xylotriose (28.8%) as end products.

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media (곤충병원세균(Photorhabdus temperata ssp. temperata) 유래 곤충 면역 억제물질 생성 비교 연구를 통한 저렴한 세균 배지 선발)

  • Seo, Sam-Yeol;Jang, Ho-Jin;Kim, Kun-Woo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.

Characterization of Thermostable Tyrosine Phenol-Lyase from an Obligatory Symbiotic Thermophile, Symbiobacterium sp. SC-1

  • Lee, Seung-Goo;Hong, Seung-Pyo;Kwak, Mi-Sun;Esaki, Nobuyoshi;Sung, Moon-Hee
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.480-485
    • /
    • 1999
  • Tyrosine phenol-lyase of thermophilic Symbiobacterium sp. SC-1, which is obligately and symbiotically dependent on thermophilic Bacillus sp. SK-1, was purified and characterized. The enzyme is composed of four identical subunits and contains approximately 1 mol of pyridoxal 5'-phosphate (PLP) per mol subunit as a cofactor. The enzyme showed absorption maxima at 330 and 420 nm, and lost this absorption profile by treatment with phenylhydrazine. The apparent dissociation constsnt, $K'_D$, for PLP was determined with the apoenzyme to be about $1.2\;{\mu}M$. The isoelectric point was 4.9. The optimal temperature and pH for the $\alpha,\beta$-elimination of L-tyrosine were found to be $80^{\circ}C$ and pH 8.0, respectively. The substrate specificity of the enzyme was very broad: L-amino acids including L-tyrosine, 3,4-dihydroxyphenyl-L-alanine (L-DOPA), L-cysteine, L-serine, S-methyl-L-cysteine, $\beta$-chloro-L-alanine, and S-(o-nitrophenyl)-L-cysteine all served as substrates. D-Tyrosine and D-serine were also decomposed into pyruvic acid and ammonia at rates of 7% and 31% relative to their corresponding L-enantiomers, respectively. D-Alanine, which was inert as a substrate in a, $\beta$-elimination, was the only D-amino acid racemized by the enzyme. The $K_m$ values for L-tyrosine, L-DOPA, S-(o-nitrophenyl)-L-cysteine, $\beta$-chloro-L-alanine, and S-methyl-L-cysteine were 0.19, 9.9, 0.36, 12, and 5.5 mM, respectively.

  • PDF

Investigation of Possible Gene Transfer to Soil Microorganisms for Environmental Risk Assessment of Genetically Modified Organisms

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Kim, Na-Rae;Kang, Tae-Hoon;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.498-502
    • /
    • 2004
  • The current study was conducted to monitor the possibility of the gene transfer among soil bacteria, including the effect of drift due to rain and surface water, in relation to the release of genetically modified organisms into the environment. Four types of bacteria, each with a distinct antibiotic marker, kanamycin-resistant P. fluorescens, rifampicin-resistant P. putida, chloramphenicol-resistant B. subtilis, and spectinomycin-resistant B. subtilis, were plated using a small-scale soil-core device designed to track drifting microorganisms. After three weeks of culture in the device, no Pseudomonas colonies resistant to both kanamycin and rifampicin were found. Likewise, no Bacillus colonies resistant to both chloramphenicol and spectinomycin were found. The gene transfer from glyphosate-tolerant soybeans to soil bacteria, including Rhizobium spp. as a symbiotic bacteria, was examined by hybridization using the DNA extracted from soil taken from pots, in which glyphosate-tolerant soybeans had been growing for 6 months. The results showed that 35S, T-nos, and EPSPS were observed in the positive control, but not in the DNA extracted from the soilborne microorganisms. In addition, no transgenes, such as the 35S promoter, T-nos, and EPSPS introduced into the GMO soybeans were detected in soilborne bacteria, Rhizobium leguminosarum, thereby strongly rejecting the possibility of gene transfer from the GMO soybeans to the bacterium.

Immunosuppressive Activity of an Entomopathogenic Bacteria, Xenorhabdus ehlersii KSY, and Its Application to Enhance Insecticidal Activity of Bacillus thuringiensis (곤충병원세균(Xenorhabdus ehlersii KSY)의 곤충면역 억제 능력과 이를 이용한 Bacillus thuringiensis 의 살충력 증가 효과)

  • Kim, Hyoil;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.58 no.2
    • /
    • pp.101-109
    • /
    • 2019
  • An entomopathogenic bacterium, Xenorhabdus ehlersii KSY, is symbiotic to a nematode, Steinernema longicaudum, and exhibits high entomopathogenic virulence against lepidopteran insects. This study showed that the bacterial pathogenicity is induced by its inhibitory activity against eicosanoid biosynthesis of target insects, resulting in immunosuppression. To be applied for insect pest control, the bacteria should be infected to insect hemocoel. To deliver X. ehlersii to inset hemocoel, Bacillus thuringiensis (Bt) was mixed with the bacteria to breakdown the physical barrier (= midgut epithelium) from midgut lumen to hemocoel. The bacterial mixture significantly enhanced insecticidal activity of Bt only against larvae of Plutella xylostella and Maruca vitrata. For formulation, X. ehlersii cells were freeze-dried and mixed with sporulated Bt cells. The formulated bacterial mixture was applied to semi-field cultivating cabbage crop infested by P. xylostella. The bacterial mixture treatment showed over 95% control efficacy, while Bt alone gave 80% control efficacy. These results suggest that X. ehlersii can be applied to develop a novel insect control agent.

Lichen-Associated Bacterium, a Novel Bioresource of Polyhydroxyalkanoate (PHA) Production and Simultaneous Degradation of Naphthalene and Anthracene

  • Nahar, Shamsun;Jeong, Min-Hye;Hur, Jae-Seoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.79-90
    • /
    • 2019
  • Lichens are generally known as self-sufficient, symbiotic life-forms between fungi and algae/cyanobacteria, and they also provide shelter for a wide range of beneficial bacteria. Currently, bacterial-derived biodegradable polyhydroxyalkanoate (PHA) is grabbing the attention of many researchers as a promising alternative to non-degradable plastics. This study was conducted to develop a new method of PHA production using unexplored lichen-associated bacteria, which can simultaneously degrade two ubiquitous industrial toxins, anthracene and naphthalene. Here, 49 lichen-associated bacteria were isolated and tested for PHA synthesis. During the GC-MS analysis, a potential strain of EL19 was found to be a 3-hydroxyhexanoate (3-HHx) accumulator and identified as Pseudomonas sp. based on the 16S rRNA sequencing. GC analysis revealed that EL19 was capable of accumulating 30.62% and 19.63% of 3-HHx from naphthalene and anthracene, respectively, resulting in significant degradation of 98% and 96% of naphthalene and anthracene, respectively, within seven days. Moreover, the highly expressed phaC gene verified the genetic basis of $PHA_{mcl}$ production under nitrogen starvation conditions. Thus, this study strongly supports the hypothesis that lichen-associated bacteria can detoxify naphthalene and anthracene, store energy for extreme conditions, and probably help the associated lichen to live in extreme conditions. So far, this is the first investigation of lichen-associated bacteria that might utilize harmful toxins as feasible supplements and convert anthracene and naphthalene into eco-friendly 3-HHx. Implementation of the developed method would reduce the production cost of $PHA_{mcl}$ while removing harmful waste products from the environment.

Production of Algal Biomass and High-Value Compounds Mediated by Interaction of Microalgal Oocystis sp. KNUA044 and Bacterium Sphingomonas KNU100

  • Na, Ho;Jo, Seung-Woo;Do, Jeong-Mi;Kim, Il-Sup;Yoon, Ho-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.387-397
    • /
    • 2021
  • There is growing interest in the production of microalgae-based, high-value by-products as an emerging green biotechnology. However, a cultivation platform for Oocystis sp. has yet to be established. We therefore examined the effects of bacterial culture additions on the growth and production of valuable compounds of the microalgal strain Oocystis sp. KNUA044, isolated from a locally adapted region in Korea. The strain grew only in the presence of a clear supernatant of Sphingomonas sp. KNU100 culture solution and generated 28.57 mg/l/d of biomass productivity. Protein content (43.9 wt%) was approximately two-fold higher than carbohydrate content (29.4 wt%) and lipid content (13.9 wt%). Oocystis sp. KNUA044 produced the monosaccharide fucose (33 ㎍/mg and 0.94 mg/l/d), reported here for the first time. Fatty acid profiling showed high accumulation (over 60%) of polyunsaturated fatty acids (PUFAs) compared to saturated (29.4%) and monounsaturated fatty acids (9.9%) under the same culture conditions. Of these PUFAs, the algal strain produced the highest concentration of linolenic acid (C18:3 ω3; 40.2%) in the omega-3 family and generated eicosapentaenoic acid (C20:5 ω3; 6.0%), also known as EPA. Based on these results, we suggest that the application of Sphingomonas sp. KNU100 for strain-dependent cultivation of Oocystis sp. KNUA044 holds future promise as a bioprocess capable of increasing algal biomass and high-value bioactive by-products, including fucose and PUFAs such as linolenic acid and EPA.