• Title/Summary/Keyword: switching power loss

Search Result 780, Processing Time 0.025 seconds

Design of a Low Power MictoController Core for Intellectual Property applications (IP활용에 적합한 저전력 MCU CORE 설계)

  • Lee, Kwang-Youb;Lee, Dong-Yup
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.470-476
    • /
    • 2000
  • This paper describes an IP design of a low-power microcontroller using an architecture level design methodology instead of a transistor level. To reduce switching capacitance, the register-toregister data transfer is adopted to frequently used register transfer micro-operations. Also, distributed buffers are proposed to reduce a input data rising edge time. To reduce power consumption without any loss of performance, pipeline processing should be used. In this paper, a 4-stage pipelined datapath being able to process CISC instructions is designed. Designed microcontroller lessens power consumption by 20%. To measure a power consumption, the SYNOPSYS EPIC powermill is used.

  • PDF

Efficiency Optimization with a Novel Magnetic-Circuit Model for Inductive Power Transfer in EVs

  • Tang, Yunyu;Zhu, Fan;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.309-322
    • /
    • 2018
  • The technology of inductive power transfer has been proved to be a promising solution in many applications especially in electric vehicle (EV) charging systems, due to its features of safety and convenience. However, loosely coupled transformers lead to the system efficiency not coming up to the expectation at the present time. Therefore, at first, the magnetic core losses are calculated with a novel magnetic-circuit model instead of the commonly used finite-element-method (FEM) simulations. The parameters in the model can be obtained with a one-time FEM simulation, which makes the calculation process expeditious. When compared with traditional methods, the model proposed in the paper is much less time-consuming and relatively accurate. These merits have been verified by experimental results. Furthermore, with the proposed loss calculation model, the system is optimized by parameter sweeping, such as the operating frequency and winding turns. Specifically, rather than a predesigned switching frequency, a more efficiency-optimized frequency for the series-parallel (SP) compensation topology is detected and a detailed investigation has been presented accordingly. The optimized system is capable of an efficiency that is greater than 93% at a coil separation distance of 200mm and coil dimensions of $600mm{\times}400mm$.

Study on Mobile Terminal Distribution Act: Effects of Subsidy Regulations (단말기 유통법에 관한 연구: 보조금 규제의 영향)

  • Yao, Xue-Ting;Kwak, Juwon
    • Journal of Distribution Science
    • /
    • v.15 no.12
    • /
    • pp.53-60
    • /
    • 2017
  • Purpose - This paper analyzes the effect of the handset subsidy and the Mobile Number Portability subscriber subsidy regulation, which are the main regulation adopted in "Law on the Improvement of the Mobile Terminal Distribution System" (Mobile Terminal Distribution Act), on the social surplus, the consumer surplus and profits of telecommunications carriers. We focus our analysis on whether the service charge competition is stimulated enough so that it can compensate for the loss of subsidies. Research design, data, and methodology - We use simple economic model to assess the impact of the handset subsidy and the Mobile Number Portability subscriber subsidy regulation. Unlike the former researches on this topic, we depart from using Hotelling model, and instead use the switching cost model, which uses switching cost as a parameter of market powers of telecommunications carriers. We also study the effect of the two different regulations when they are adopted both independently and concurrently. Results - If the market powers of telecommunications carriers are over certain threshold, contrary to the regulatory agency's assertion, the service charge competition would not be stimulated enough to compensate for the deduction in the subsidies, and thus the consumer surplus is compromised. Number Portability subsidy, especially, undermines the rival's market power and thus reduces the service charge. On the other hand, the regulations will also increase the profits of telecommunications carriers. However, social surplus is maximized when both of the regulations are present because the regulations reduces the frequency of switching handsets inefficiently. Conclusions - In enacting the Mobile Terminal Distribution Act, the telecommunications regulatory agency asserted that the regulation on subsidies will stimulate service charge competition, and in the long run, enhance the consumer surplus. However, contrary to the regulatory agency's assertion, subsidy regulation, especially the regulation on Number Portability subsidy, reduces consumer surplus. On the other hand, the Mobile Terminal Distribution Act can also increase the profits of telecommunications carriers because it decreases competition among the telecommunications carriers. However, the Mobile Terminal Distribution Act can increase the social surplus because it reduces inefficient switching of handsets.

2500V IGBTs with Low on Resistance and Faster Switching Characteristic (낮은 온-저항과 빠른 스위칭 특성을 갖는 2500V급 IGBTs)

  • Shin, Samuell;Koo, Yong-Seo;Won, Jong-Il;Kwon, Jong-Ki;Kwak, Jae-Chang
    • Journal of IKEEE
    • /
    • v.12 no.2
    • /
    • pp.110-117
    • /
    • 2008
  • This paper presents a new Insulated Gate Bipolar Transistor(IGBT) based on Non Punch Through(NPT) IGBT structure for power switching device. The proposed structure has adding N+ beside the P-base region of the conventional IGBT structure. The added n+ diffusion of the proposed device ensure device has faster turn-off time and lower forward conduction loss than the conventional IGBT structure. But, added n+ region can reduce th breakdown voltage and latching current density of the proposed device due to its high doping concentration. This problems can be overcome by using diverter on the right side of the device. In the simulation results, turn-off time of the proposed device is 0.3us and the on-state voltage drop is 3V. The results show that the proposed device has superior characteristic than conventional structure.

  • PDF

The Development of Buck Type Electronic Ballast for 250W MHL and Dimming System (250W MHL용 Buck Type 전자식 안정기 및 Dimming 시스템 개발)

  • 박종연;박영길;정동열;김한수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.30-40
    • /
    • 2002
  • This paper studies the electronic ballast development for 250w MH lamps. We have improved the input power factor using a PFC IC. To provide the rating voltage required In the lamps, we have used the buck type dc-dc converter By this method, the stress of switching devices in inverter can be reduced. The inverter is the Full-Bridge type. To eliminate the acoustic resonance phenomena of MH lamps, we have added the high frequency sinewave voltage to the low frequency square-wave voltage to the lamp. We hove developed the igniter circuit using the L, C devices. We could control dimming of the lamp by varying the output voltage of the buck converter. The time of illuminating lamps and luminous intensity could be adjusted by season and time band. The buck converter output voltage can be controlled and the no load and over current situation were Protected by the development of the microprocessor Program.

The Optimal Design of High Voltage Field Stop IGBT (고전압 Field Stop IGBT의 최적화 설계에 관한 연구)

  • Ahn, Byoung-Sup;Zhang, Lanxiang;Liu, Yong;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.486-489
    • /
    • 2015
  • Power semiconductor device has a very long history among semiconductor, since the invention of low-pressure bipolar transistor 1947, and so far from small capacity to withstand voltage-current, high-speed and high-frequency characteristics have been developed with high function. In this study, the PWM IC Switch to the main parts used in IGBT (insulated gate bipolar transistor) for the low power loss and high drive capability of the simulator to Synopsys' T-CAD used by the 1,700 V NPT Planar IGBT, 1,700 V FS was a study of the Planar IGBT, the results confirmed that IGBT 1,700 V FS Planar is making about 11 percent less than the first designed NPT Planar IGBT.

A New PWM-Controlled Quasi-Resonant Converter for High Efficiency PDP Sustaining Power Module (고효율의 PDP 유지 구동 전원단을 위한 새로운 펄스폭 제어방식의 쿼지 공진 컨버터)

  • Lee Woo-Jin;Choi Seong-Wook;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.352-355
    • /
    • 2006
  • A new PWM-controlled quasi-resonant converter for high efficiency PDP sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the resonant capacitor with hi-directional auxiliary circuit, while the main switches are operating at the fixed duty ratio and fixed switching frequency. Hence, the waveform of currents can be expected to be optimized on the conduction loss. Furthermore, the proposed converter shows the good ZVS capability, simple control circuits, no high voltage ringing problem of rectifier diodes, no DC offset of the magnetizing current and low voltage stress of power switches. In this paper, operational principles, analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit as PWM method.

  • PDF

Fault Tolerant Operation of CHB Multilevel Inverters Based on the SVM Technique Using an Auxiliary Unit

  • Kumar, B. Hemanth;Lokhande, Makarand M.;Karasani, Raghavendra Reddy;Borghate, Vijay B.
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.56-69
    • /
    • 2018
  • In this paper, an improved Space Vector Modulation (SVM) based fault tolerant operation on a nine-level Cascaded H-Bridge (CHB) inverter with an additional backup circuit is proposed. Any type of fault in a power converter may result in a power interruption and productivity loss. Three different faults on H-bridge modules in all three phases based on the SVM approach are investigated with diagrams. Any fault in an inverter phase creates an unbalanced output voltage, which can lead to instability in the system. An additional auxiliary unit is connected in series to the three phase cascaded H-bridge circuit. With the help of this and the redundant switching states in SVM, the CHB inverter produces a balanced output with low harmonic distortion. This ensures high DC bus utilization under numerous fault conditions in three phases, which improves the system reliability. Simulation results are presented on three phase nine-level inverter with the automatic fault detection algorithm in the MATLAB/SIMULINK software tool, and experimental results are presented with DSP on five-level inverter to validate the practicality of the proposed SVM fault tolerance strategy on a CHB inverter with an auxiliary circuit.

Voltage Balance Control of Cascaded H-Bridge Rectifier-Based Solid-State Transformer with Vector Refactoring Technology in αβ Frame

  • Wong, Hui;Huang, Wendong;Yin, Li
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.487-496
    • /
    • 2019
  • For a solid-state transformer (SST), some factors, such as signal delay, switching loss and differences in the system parameters, lead to unbalanced DC-link voltages among the cascaded H-bridges (CHB). With a control method implemented in the ${\alpha}{\beta}$ frame, the DC-link voltages are balanced, and the reactive power is equally distributed among all of the H-bridges. Based on the ${\alpha}{\beta}$ frame control, the system can achieve independent active current and reactive current control. In addition, the control method of the high-voltage stage is easy to implement without decoupling or a phase-locked loop. Furthermore, the method can eliminate additional current delays during transients and get the dynamic response rapidly without an imaginary current component. In order to carry out the controller design, the vector refactoring relations that are used to balance DC-link voltages are derived. Different strategies are discussed and simulated under the unbalanced load condition. Finally, a three-cell CHB rectifier is constructed to conduct further research, and the steady and transient experimental results verify the effectiveness and correctness of the proposed method.

Research on operation stability of 7kW Inverter for short distance vehicle using SiC Hybrid module (SiC 하이브리드 모듈을 적용한 근거리용 7kW Inverter 동작 안정성에 대한 연구)

  • Jeon, Joon-Hyeok;Kyoung, Sin-Su;Kim, Hee-Jun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.499-506
    • /
    • 2019
  • This paper is concerned with the operating stability of 7kW inverter using SIC hybrid module and verifies the validity of the simulation results by comparing the result of the loss equation and the simulation result, Simulation results using Si module and SiC hybrid module are compared to compare switch loss and diode loss. Through the loss equation calculation, the conduction loss of SiC Hybrid module is 168W, switching loss is 9.3W, diode loss is 10.5nW, When compared with the simulation results, similar values were shown. As a result of comparing the simulation results of the Si module and the SiC Hybrid module, The total device loss of the Si module was 246.2W, and the total device loss of the SiC Hybrid module was 189.9W. The loss difference was 56.3W, which was about 0.8W. thereby verifying the reverse recovery characteristics of the SiC SBD. In addition, temperature saturation test was conducted to confirm the stability of SiC Hybrid module and Si module under high temperature saturation, In the case of the Si module, the output power was stopped at 4kW, and the SiC Hybrid module was confirmed to operate at 7kW. Based on this, an efficiency graph and a temperature graph are presented, and the Si module is graphed up to 4kW and the SiC Hybrid module is graphed up to 7kW.