• Title/Summary/Keyword: switch cell

Search Result 350, Processing Time 0.027 seconds

Circuit Design of an RSFQ 2$\times$2 Crossbar Switch for Optical Network Switch Applications (광 네트워크 응용을 위한 RSFQ 2$\times$2 Switch 회로의 설계)

  • 홍희송;정구락;박종혁;임해용;강준희;한택상
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.146-149
    • /
    • 2003
  • In this Work, we have studied about an RSFQ 2$\times$2 crossbar switch. The circuit was designed, simulated, and laid out for mask fabrication The switch cell was composed of a splitter a confluence buffer, and a switch core. An RSFQ 2$\times$2 crossbar switch was composed of 4 switch cells, a switch control input to select the cross and bar, data input, and data outputs. When a pulse was input to the switch control input to select the cross or bar the route of the input data was determined, and the data was output at the proper output port. We simulated and optimized the switch-element circuit and 2$\times$2 crossbar switch, by using Xic and Julia. We also performed the mask layout of the circuit by using Xic and Lmeter.

  • PDF

A Design of ATM Firewall Switch using Cell Screening (셀 스크리닝 방식에 기반한 ATM Firewall Switch의 설계)

  • Hong, Seung-Seon;Jeong, Tae-Myeong;Park, Mi-Ryong;Lee, Jong-Hyeop
    • The KIPS Transactions:PartC
    • /
    • v.8C no.4
    • /
    • pp.389-396
    • /
    • 2001
  • 기존의 라우터 기반의 패킷 스크리닝 방식은 ATM 네트워크 상에서는 패킷 수준의 스크리닝 기능의 적용을 위하여 SAR(Segmentation And Reassembly) 과정을 필요로 하기 때문에 고속의 셀 처리를 수행하는 ATM Switch의 셀 처리 속도를 저하시킨다는 문제점을 안고 있다. 본 논문에서는 셀 스크리닝 방식에 기반한 병렬 처리 구조의 ATM Firewall Switch를 제안한다. 제안된 Enhanced ATM Firewall Switch는 셀 단위로 분할된 패킷의 1, 2번 셀들에 대한 검사만을 통하여 스크리닝 기능을 수행하기 때문에 셀 단위의 스크리닝 수행이 가능하며, 정책 캐쉬의 도입을 통해 셀 스크리닝 수행속도를 향상하였다. 또한 독립적인 User Cells Filter 기능 블록의 설계를 통하여 병렬 처리 구조의 셀 스크리닝 수행이 가능하도록 구성하여 셀 지연 시간을 최소화하였다.

  • PDF

Microplasma Current Switch for OLED applications

  • Cai, Jie-Yu;Kim, Myung-Min;Moon, Cheol-Hee;Lee, Sang-Youn;Yi, Seung-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.854-857
    • /
    • 2009
  • The concept of a microplasma current switch for a device operated in a current mode like organic light-emitting diodes, which features matrix addressability and current switching, is presented as well as its architecture and operational principle. To verify the concept, we have fabricated a 100 mm ${\times}$ 100 mm microplasma current switch panel with a cell pitch of $1080{\mu}m{\times}1080{\mu}m$. Moreover, the current-voltage measurements of the unit cell are performed for three different driving voltage amplitudes. They show the characteristic of an asymmetric floating double probe diagnosing plasmas.

  • PDF

Design of a gate driver driving active balancing circuit for BMSs. (BMS용 능동밸런싱 회로 소자 구동용 게이트 구동 칩 설계)

  • Kim, Younghee;Jin, Hongzhou;Ha, Yoongyu;Ha, Panbong;Baek, Juwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.732-741
    • /
    • 2018
  • In order to maximize the usable capacity of a BMS (battery management system) that uses several battery cells connected in series, a cell balancing technique that equips each cell with the same voltage is needed. In the active cell balancing circuit using a multi-winding transformer, a balancing circuit that transfers energy directly to the cell (cell-to-cell) is composed of a PMOS switch and a gate driving chip for driving the NMOS switch. The TLP2748 photocoupler and the TLP2745 photocoupler are required, resulting in increased cost and reduced integration. In this paper, instead of driving PMOS and NMOS switching devices by using photocoupler, we proposed 70V BCD process based PMOS gate driving circuit, NMOS gate driving circuit, PMOS gate driving circuit and NMOS gate driving circuit with improved switching time. ${\Delta}t$ of the PMOS gate drive switch with improved switching time was 8.9 ns and ${\Delta}t$ of the NMOS gate drive switch was 9.9 ns.

25 kW, 300 kHz High Step-Up Soft-Switching Converter for Next-Generation Fuel Cell Vehicles (차세대 연료전지 자동차용 25kW, 300kHz 고승압 소프트 스위칭 컨버터)

  • Kim, Sunju;Tran, Hai Ngoc;Kim, Jinyoung;Kieu, Huu-Phuc;Choi, Sewan;Park, Jun-Sung;Yoon, Hye-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.404-410
    • /
    • 2021
  • This paper proposes a high step-up converter with zero-voltage transition (ZVT) cell for fuel cell electric vehicle. The proposed converter applies a ZVT cell to a dual floating output boost converter (DFOBC) so that not only the main switch but also the ZVT switch can achieve full-range soft switching. The current rating of the ZVT switch is 17% of the main switch. The proposed converter has high reliability in that no timing issue occurs. Therefore, online calculation is not required. The minimum turn-on time of the ZVT switch that guarantees soft switching at all loads and input/output voltage is obtained by analysis. In addition, the proposed DFOBC allows the use of a 650 V device even at 800 V output and has the advantage of being able to boost the voltage by 3.5 times with 0.56 duty. Planar coupled inductor with PCB winding was successfully implemented with the converter operated at 300 kHz. The 25 kW prototype achieves peak efficiency of 99% and power density of 63 kW/L.

An Effective Cell Scheduling Algorithm for Input Queueing ATM Switch (입력단 큐잉 방식의 ATM 스위치를 위한 효율적 셀 중재 방식에 관한 연구)

  • 김용웅;원상연;박영근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1A
    • /
    • pp.122-131
    • /
    • 2000
  • In this paper, we propose a cell scheduling algorithm for input queueing ATM switch. The input queueing architecture is attractive for building an ultra-high speed ATM (Asynchronous Transfer Mode) switch. We proposea WMUCS (Weighted Matrix Unit Cell Scheduler) based on the MUCS which resolves HOL blocking and outputport contention. The MUCS algorithm selects an optimal set of entries as winning cells from traffic matrix (weightmatrix). Our WMUCS differs from the MUCS in generating weight matrices. This change solves the starvationproblem and it reduces the cell loss variance. The performance of the proposed algorithm is evaluated by thesimulation program written in C++. The simulation results show that the maximum throughput, the average celldelay, and the cell loss rate are significantly improved. We can see that the performance of WMUCS is excellentand the cost-effective implementation of the ATM switch using proposed cell scheduling algorithm.

  • PDF

A comparative analysis on switch performances for congestion controls in ATM Networks (ATM망에서 폭주 제어를 위한 스위치 성능의 비교 분석)

  • 조미령;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.547-564
    • /
    • 2001
  • In this paper a simulation has been performed to compare and evaluate the performance between the EPRCA(Enhanced Proportional Rate Control Algorithm) and EMRCA(Explicit Max_min Rate Control Algorithm) switches. The variation of the ACR at the source end system, the queue length, the utilization rate of the link bandwidth and the share fairness at the transient and steady states are used as the evaluation criteria for the simulation. The EMRCA switch is more stable than the EPRCA switch and reduces its buffer size. Also, it achieves a higher utilization rate of the link bandwidth than the EPRCA switch. The hardware complexity of the EMRCA switch is significantly lower than the EPRCA and other rate-based switches. Since it eliminates the necessity of the floating-point operation for calculation of the MACR(Mean Allowed Cell Rate) at the switch.

  • PDF

A cell scheduling of a logically separated buffer in ATM switch (ATM 스위치에서 논리적으로 분할된 버퍼의 셀 스케쥴링)

  • 구창회;나지하;박권철;박광채
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1755-1764
    • /
    • 1997
  • In this paper, we proposed the mechanism for the buffer allocation and a cell scheduling method with logical separation a single buffer in the ATm switch, and analyzed the cell loss probability and the delay of each trafic (CBR/VBR/ABR) based on the weighted value and the dynamic cell service scheduling algorithm. The proposed switch buffering system classifies composite trafics incoming to the switch, according to the characteristic of traffic, then stores them in the logically separated buffers, and adopts the round-robin service with weighted value in order to transmit cells in buffers though one output port. We analyzed 4 cell service scheduling algorithms with dynamic round-robinfor each logically separated service line of a single buffer, in which buffers have the respective weighted values and 3 classes on mixed traffic which characteristized by traffic descriptor. In simulation, using SIMCRIPT II.5., we model the VBR and the ABR traffics as ON/OFF processes, and the CBR traffic as a Poisson processes. As the results of analysis according to the proposed buffer management mechanism and cell service algorithm, we have found that the required QoS of each VC can be quaranteed depends on a scale of weighted values allocated to buffers that changed the weighted values, and cell scheduling algorithm.

  • PDF

Characteristic of fuel Cell DC-AC Inverter Using New Active Clamping Method (새로운 능동 클램핑방식을 이용한 연료전지용 DC-AC 인버터의 특성)

  • Kim, C.Y.;Cho, M.C.;Mun, S.P.;Kim, Y.J.;Nakaoka, Mutsuo;Kim, H.S.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.337-340
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V], In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch S5 and S6 in the secondary switch, which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household.

  • PDF

Study on Soft-Switching Transformers Inductor Boost Converter for Fuel Cell Powered Railway Vehicle

  • Jung, No-Geon;Kim, Jae-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2553-2560
    • /
    • 2018
  • In Korea, there are no instances where a hydrogen fuel cell power generation system has been used in a railway vehicle. Only the basic topology has been studied. In the previous study, conventional converters using a single switch were applied to the fuel cell power generation system. Therefore, current stress on the switch at converter on-off transitions would be large when controlling a large-capacity railway vehicle. In addition, since the input side ripple is also large, there is a problem with a shortening of the lifetime of both the fuel cell power generation system and the inductor. In this paper, a soft-switching transformer inductor boost converter for fuel cell powered railway vehicles was proposed. A technique to reduce both the switching current stress generated during on-off transitions, and the input ripple current flowing in the inductor were studied. The soft-switching TIB converter uses a transformer-type inductor to configure the entire circuit in an interleaved method, and reduces both input current ripple and the current ripple of the inductor and switch.