• Title/Summary/Keyword: swelling clay

Search Result 76, Processing Time 0.024 seconds

A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems

  • Lotanna Ohazuruike;Kyung Jae Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1495-1506
    • /
    • 2023
  • For the safe disposal of high-level radioactive waste using Engineered Barrier Systems (EBS), bentonite buffer is used by its high swelling capability and low hydraulic conductivity. When the bentonite buffer is contacted to heated pore water containing ions by radioactive decay, chemical alterations of minerals such as illitization reaction occur. Illitization of bentonite indicates the alteration of expandable smectite into non-expandable illite, which threatens the stability and integrity of EBS. This study intends to provide a thorough review on the information underlying in the illitization of bentonite, by covering basic clay mineralogy, smectite expansion, mechanisms and observation of illitization, and illitization in EBS. Since understanding of smectite illitization is crucial for securing the safety and integrity of nuclear waste disposal systems using bentonite buffer, this thorough review study is expected to provide essential and concise information for the preventive EBS design.

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

Mineralogy and Fabric of Four Swelling Shales (팽진성 쉐일들의 광유조무과 층상구조)

  • 이영남
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1989.10a
    • /
    • pp.1.3-25
    • /
    • 1989
  • This paper describes procedures and the results of mineralogical, fabric and pore sixte analyses perforied on four shales to understand time-dependent deforiation behav iour of swell ins shales better. Mineralogical compositions of theme shales are eBtablished froi the results of X-ray diffraction snalysis and chemical analyses. The importance of the fabric in the understanding of swelling behaviour of shales is demonstrated using Scanning Electron Microscope (SRI). The change in pore sixte distribution during the process of swelling is investigated by measuring pore size distribution before and after free swell test. The results Of the Present study imply that the swelling of Shales studied is not attributed to minerals like pyritei anhydrite or swelling clay minerals. The anisotropic swelling behaviour of shales studied ray be explained by fabrics of theme shales and the difference in them. The swelling of theme shales is found to be accoipanied by increase in the volute of pores.

  • PDF

The Effect of Clay Concentration on Mechanical and Water Barrier Properties of Chitosan-Based Nanocomposite Films

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.925-930
    • /
    • 2006
  • Chitosan-based nanocomposite films were prepared using a solution intercalation method incorporating varying amounts of organically modified montmorillonite (Cloisite 30B) from 0 to 30 wt%. The nanocomposite films prepared were optically clear despite a slight decrease in the transmittance due to the spatial distribution of nanoclay. X-ray diffraction patterns indicated that a certain degree of intercalation or exfoliation formed when the amount of clay in the film was low and that microscale tactoids formed when the clay content in the sample was high (more than 10 wt%). The tensile strength (TS) of the chitosan film increased when the clay was incorporated up to 10 wt% and then decreased with further increases in the clay content of the film. The elongation at break (E) increased slightly upon the addition of low levels of clay up to 5 wt% and then decreased with further increases in the amount of the clay in the film. The water vapor permeability (WVP) decreased exponentially with increasing clay content. The water solubility (WS) and swelling ratio (SR) of the nanocomposite films decreased slightly, indicating that the water resistance of the chitosan film increased due to the incorporation of the nanoclay.

Studies on Composite Filaments from Nanoclay Reinforced Polypropylene

  • Joshi, Mangala;Shaw, M.;Butola, B.S.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • The development of high tenacity, high modulus monofilaments from Polypropylene/Clay nanocomposite has been investigated. Pure sodium montmorillonite nanoclay was modified using hexadecyl trimethyl ammonium bromide (HTAB) via an ion exchange reaction. Pure and modified clay were characterized through X-ray diffraction, FTIR and TGA. The modified clay was melt blended with polypropylene (PP) in presence of a swelling agent. Composite filaments from PP/Clay nanocomposite were prepared at different weight percentages of nanoclay and the spinning and drawing conditions were optimized. The filaments were characterized for their mechanical, morphological and thermal properties. The composite PP filaments with modified clay showed improved tensile strength, modulus and reduced elongation at break. The composite filaments with unmodified clay did not show any improvement in tensile strength but the modulus improved. The sharp and narrow X-ray diffraction peaks of PP/nanoclay composite filaments indicate increase in crystallinity in presence of modified clay at small loadings (0.5 %). The improved thermal stability was observed in filaments with modified as well as unmodified clays.

Hydromechanical behavior of a natural swelling soil of Boumagueur region (east of Algeria)

  • Mebarki, Mehdi;Kareche, Toufik;Derfouf, Feth-Ellah Mounir;Taibi, Said;Abou-bekr, Nabil
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.69-79
    • /
    • 2019
  • This work presents an experimental study of the hydromechanical behavior of a natural swelling soil taken from Boumagueur region east of Algeria. Several pathological cases due to the soil shrinkage / swelling phenomenon were detected in this area. In a first part, the hydric behavior on drying-wetting paths was made, using the osmotic technics and saturated salts solutions to control suction. In The second part, using a new osmotic oedometer, the coupled behavior as a function of applied stresses and suction was investigated. It was shown that soil compressibility parameters was influenced by suction variations that an increase in suction is followed by a decrease in the virgin compression slope. On the other hand, the unloading slope of the oedometric curves was not obviously affected by the imposed suction. The decrease in suction strongly influences the apparent preconsolidation pressure, ie during swelling of the samples after wetting.

The Introduction of Egg-Cam Clay Model and Elasto-Plastic Analysis of Reinforcement Effect on Buried Pipe (Egg-Cam Clay 모델 제안 및 지중매설관의 보강효과의 탄소성모델 해석)

  • Ahn, Tae-Bong;Cho, Sam-Duck;Kim, Jin-Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.5-14
    • /
    • 2002
  • In this study, stress-deformation characteristics of buried pipe are studied. A numerical model, i.e., Egg-Cam Clay is introduced for the analysis of soft clay. Cam Clay model has a difficulty in analyzing soft clay that has two properties of shrinkage and swelling. Egg-Cam Clay model is modified format of Cam Clay model. In addition, Mohr-Coulomb model using finite element method is employed to verify effects of the geogrid, EPS geofoam. Stress deformation of several cases of pipe and other reinforcemnt material combinations are analyzed. Geofoam and geogrid have positive effects on the deformation characteristics.

  • PDF

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.

Assessment of the swelling potential of Baghmisheh marls in Tabriz, Iran

  • Asghari-Kaljahi, Ebrahim;Barzegari, Ghodrat;Jalali-Milani, Shahrokh
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.267-275
    • /
    • 2019
  • Tabriz is a large Iranian city and the capital of the East Azerbaijan province. The bed rock of this city is mainly consisted of marl layers. Marl layers have some outcrops in the northern and eastern parts of city that mainly belong to the Baghmisheh formation. Based on their colors, these marls are classified into three types: yellow, green, and gray marls. The city is developing toward its eastern side wherein various civil projects are under construction including tunnels, underground excavation, and high-rise building. In this regard, the swelling behavior assessment of these marls is of critical importance. Also, in lightweight structures with foundation pressure less than swelling pressure, several problems such as walls cracking and jamming of door and windows may occur. In the present study, physical properties and swelling behavior of Baghmisheh marls are investigated. According to the X-ray diffractometer (XRD) results, the marls are mainly composed of Illite, Kaolinite, Montmorillonite, and Chloride minerals. Type and content of clay minerals and initial void ratio have a decisive role in swelling behavior of these marls. The swelling potential of these marls was investigated using one-dimensional odometer apparatus under stress level up to 10 kPa. The results showed that yellow marls have high swelling potential and expansibility compared to the other marls. In addition, green and gray marls showed intermediate and low swelling potential and swelling pressure, respectively.

A Study on the Relationship between the Physical Properties of Soil and the Compression Index of Soft Clay in Gyungnam Coastal Region (경남해안지역 연약점토의 토질특성과 압축지수와의 상관성에 관한 연구)

  • 장정욱;최성민;박춘식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.4
    • /
    • pp.282-289
    • /
    • 2001
  • This study analyzed the relationship between the physical properties of soil and the compression index of the soft clay in Gyungnam coastal region. Tests of physical and mechanical properties of soil have been carried out under the undisturbed condition at 82 Gimhae, 18 Jinhae and 27 Geojespecimens. The result showed that Terzaghi & Peck's empirical equation of the compression index were not applicable. The compression index of soft clay in Gyungnam coastal region was correlated with the water contents, the liquid limit and the initial void ratio. Among these, the initial void ratio showed the highest correlation with the compression index of soft clay in Gyungnam coastal region and the relationship is shown in the following. (1) The compression index of soft clay in Gyungnam coastal region is represented as follows: $C_c=0.74(e_o-0.7$ (2) The relationship between compression index and the swelling index in Gyungnam coastal region is represented as follows: $C_s=(1/8-1/15)C_c$.

  • PDF