• Title/Summary/Keyword: swarm system

Search Result 374, Processing Time 0.025 seconds

On the Particle Swarm Optimization of cask shielding design for a prototype Sodium-cooled Fast Reactor

  • Lim, Dong-Won;Lee, Cheol-Woo;Lim, Jae-Yong;Hartanto, Donny
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.284-292
    • /
    • 2019
  • For the continuous operation of a nuclear reactor, burnt fuel needs to be replaced with fresh fuel, where appropriate (ex-vessel) fuel handling is required. Particularly for the Sodium-cooled Fast Reactor (SFR) refueling, its process has unique challenges due to liquid sodium coolant. The ex-vessel spent fuel transportation should concern several design features such as the radiation shielding, decay-heat removal, and inert space separated from air. This paper proposes a new design optimization methodology of cask shielding to transport the spent fuel assembly in a prototype SFR for the first time. The Particle Swarm Optimization (PSO) algorithm had been applied to design trade-offs between shielding and cask weight. The cask is designed as a double-cylinder structure to block an inert sodium region from the air-cooling space. The PSO process yielded the optimum shielding thickness of 26 cm, considering the weight as well. To confirm the shielding performance, the radiation dose of spent fuel removed at its peak burnup and after 1-year cooling was calculated. Two different fuel positions located during transportation were also investigated to consider a functional disorder in a cask drive system. This study concludes the current cask design in normal operations is satisfactory in accordance with regulatory rules.

Fuzzy optimization of radon reduction by ventilation system in uranium mine

  • Meirong Zhang;Jianyong Dai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2222-2229
    • /
    • 2023
  • Radon and radon progeny being natural radioactive pollutants, seriously affect the health of uranium miners. Radon reduction by ventilation is an essential means to improve the working environment. Firstly, the relational model is built between the radon exhalation rate of the loose body and the ventilation parameters in the stope with radon percolation-diffusion migration dynamics. Secondly, the model parameters of radon exhalation dynamics are uncertain and described by triangular membership functions. The objective functions of the left and right equations of the radon exhalation model are constructed according to different possibility levels, and their extreme value intervals are obtained by the immune particle swarm optimization algorithm (IPSO). The fuzzy target and fuzzy constraint models of radon exhalation are constructed, respectively. Lastly, the fuzzy aggregation function is reconstructed according to the importance of the fuzzy target and fuzzy constraint models. The optimal control decision with different possibility levels and importance can be obtained using the swarm intelligence algorithm. The case study indicates that the fuzzy aggregation function of radon exhalation has an upward trend with the increase of the cut set, and fuzzy optimization provides the optimal decision-making database of radon treatment and prevention under different decision-making criteria.

Particle Swarm Optimization-Based Peak Shaving Scheme Using ESS for Reducing Electricity Tariff (전기요금 절감용 ESS를 활용한 Particle Swarm Optimization 기반 Peak Shaving 제어 방법)

  • Park, Myoung Woo;Kang, Moses;Yun, YongWoon;Hong, Seonri;BAE, KUK YEOL;Baek, Jongbok
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.388-398
    • /
    • 2021
  • This paper proposes a particle swarm optimization (PSO)-based peak shaving scheme using energy storage system (ESS) for electricity tariff reduction. The proposed scheme compares the actual load with the estimated load consumption, calculates the additional output power that the ESS needs to discharge additionally to reduce peak load, and adds the input. In addition, in order to compensate for the additional power, the process of allocating power to the determined point is performed, and an optimization that minimizes the average of the load expected at the active power allocations using PSO so that the allocated value does not affect the peak load. To investigated the performance of the proposed scheme, case study of small and large load prediction errors was conducted by reflecting actual load data and load prediction algorithm. As a result, when the proposed scheme is performed with the ESS charge and discharge control to reduce electricity tariff, even when the load prediction error is large, the peak load is successfully reduced, and the peak load reduction effect of 17.8% and electricity tariff reduction effect of 6.02% is shown.

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

PAPR Reduction of an OFDM Signal by use of PTS scheme with MG-PSO Algorithm (MG-PSO 알고리즘을 적용한 PTS 기법에 의한 OFDM 신호의 PAPR 감소)

  • Kim, Wan-Tae;Yoo, Sun-Yong;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • OFDM(Orthogonal Frequency Division Multiplexing) system is robust to frequency selective fading and narrowband interference in high-speed data communications. However, an OPDM signal consists of a number of independently modulated subcarriers and the superposition of these subcarriers causes a problem that can give a large PARR(Peak-to-Average Power Ratio). PTS(Partial Transmit Sequence) scheme can reduce the PAPR by dividing OFDM signal into subblocks and then multiplying the phase weighting factors to each subblocks, but computational complexity for selecting of phase weighting factors increases exponentially with the number of subblocks. Therefore, in this paper, MG-PSO(Modified Greedy algorithm-Particle Swarm Optimization) algorithm that combines modified greedy algorithm and PSO(Particle Swarm Optimization) algorithm is proposed to use for the phase control method in PTS scheme. This method can solve the computational complexity and guarantee to reduce PAPR. We analyzed the performance of the PAPR reduction when we applied the proposed method to telecommunication systems.

Consensus-based Autonomous Search Algorithm Applied for Swarm of UAVs (군집 무인기 활용을 위한 합의 기반 자율 탐색 알고리즘)

  • Park, Kuk-Kwon;Kwon, Ho-Jun;Choi, Eunju;Ryoo, Chang-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.443-449
    • /
    • 2017
  • Swarm of low-cost UAVs for search mission has benefit in the sense of rapid search compared to use of single high-end UAV. As the number of UAVs forming swarm increases, not only the time for the mission planning increases, but also the system to operate UAVs has excessive burden. This paper addresses a decentralized area search algorithm adequate for multiple UAVs which takes advantages of flexibility, robustness, and simplicity. To down the cost, it is assumed that each UAV has limited ability: close-communication, basic calculation, and limited memory. In close-communication, heath conditions and search information are shared. And collision avoidance and consensus of next search direction are then done. To increase weight on un-searched area and to provide overlapped search, the score function is introduced. Performance and operational characteristics of the proposed search algorithm and mission planning logic are verified via numerical simulations.

A Study on Vulnerability of Cyber Electronic Warfare and Analysis of Countermeasures for swarm flight of the NBC Reconnaissance Drones (화생방 정찰 드론의 군집비행 시 사이버전자전 취약점 및 대응방안 분석)

  • Kim, Jee-won;Park, Sang-jun;Lee, Kwang-ho;Jung, Chan-gi
    • Convergence Security Journal
    • /
    • v.18 no.2
    • /
    • pp.133-139
    • /
    • 2018
  • The 5 Game changer means the concepts of the army's operation against the enemy's asymmetric threats so that minimize damage to the public and leads to victory in war in the shortest time. A study of network architecture of Dronebot operation is a key study to carry out integrated operation with integrated C4I system by organically linking several drones battle groups through ICT. The NBC reconnaissance drones can be used instead of vehicles and humans to detect NBC materials and share situations quickly. However, there is still a lack of research on the swarm flight of the NBC reconnaissance drones and the weaknesses of cyber electronic warfare. In this study, we present weaknesses and countermeasures of CBRNs in swarm flight operations and provide a basis for future research.

  • PDF

Design of a Multilayer Radar Absorbing Structure Based on Particle Swarm Optimization Algorithm (입자 군집 최적화(PSO) 알고리즘 기반 다층 레이더 흡수 구조체 설계)

  • Choi, Young-Doo;Han, Min-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, a multilayer radar absorbing structure was designed using the Particle Swarm Optimization (PSO) algorithm, and the characteristics of the multilayer radar absorbing structure were analyzed. It was shown that design values can be derived quickly and accurately by applying PSO to the design of a multilayer radar absorbing structure, and it is also shown that the optimal multilayer radar absorbing structure can be designed especially for an oblique incident. In addition, it was shown that the optimal value that meets the performance requirements can be determined even in a combination of various design parameters. It is presented through a comprehensive flowchart including the equations and detailed descriptions of all variables for each step. From the results of this paper, it is possible to omit complex and many calculations for designing a multilayer radar absorbing structure, and it is possible to use various composite materials. It can be utilized in the design and development of multilayer radar absorbing structures.

Available Transfer Capability Evaluation Considering CO2 Emissions Using Multi-Objective Particle Swarm Optimization (CO2 배출량을 고려한 가용송전용량 계산에 관한 연구)

  • Chyun, Yi-Kyung;Kim, Mun-Kyeom;Lyu, Jae-Kun;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1017-1024
    • /
    • 2010
  • Under the Kyoto Protocol many countries have been requested to participate in emissions trading with the assigned $CO_2$ emissions. In this environment, it is inevitable to change the system and market operation in deregulated power systems, and then ensuring safety margin is becoming more important for balancing system security, economy and $CO_2$ emissions. Nowadays, available transfer capability (ATC) is a key index of the remaining capability of a transmission system for future transactions. This paper presents a novel approach to the ATC evaluation with $CO_2$ emissions using multi-objective particle swarm optimization (MOPSO) technique. This technique evolves a multi-objective version of PSO by proposing redefinition of global best and local best individuals in multi-objective optimization domain. The optimal power flow (OPF) method using MOPSO is suggested to solve multi-objective functions including fuel cost and $CO_2$ emissions simultaneously. To show its efficiency and effectiveness, the results of the proposed method is comprehensively realized by a comparison with the ATC which is not including $CO_2$ emissions for the IEEE 30-bus system, and is found to be quite promising.