• Title/Summary/Keyword: swarm robot control

Search Result 57, Processing Time 0.039 seconds

Grid-based Output Control for Wind Farm Using PSO (PSO를 이용한 계통연계를 위한 풍력발전단지의 출력 제어)

  • Moon, Il Kwon;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1092-1097
    • /
    • 2014
  • In this paper, we propose the grid-based output control method for wind farm. To do this, we propose the output control method using the PSO(Particle Swarm Optimization) algorithm. Secondly, we propose the method for detecting the harmonics using STFT(Short-Time Fourier Transform) algorithm. And last, we propose the method for compensating the harmonics using neural network. Finally, we show the effectiveness and feasibility of the proposed method though some simulations.

Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control (다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석)

  • Lee, Seung-Mok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we present the results of the performance statistical analysis of the multi-robot formation control based on receding horizon particle swarm optimization (RHPSO). The formation control problem of multi-robot system can be defined as a constrained nonlinear optimization problem when considering collision avoidance between robots. In general, the constrained nonlinear optimization problem has a problem that it takes a long time to find the optimal solution. The RHPSO algorithm was proposed to quickly find a suboptimal solution to the optimization problem of multi-robot formation control. The computational complexity of the RHPSO increases as the number of candidate solutions and generations increases. Therefore, it is important to find a suboptimal solution that can be used for real-time control with minimal candidate solutions and generations. In this paper, we compared the formation error according to the number of candidate solutions and the number of generations. Through numerical simulations under various conditions, the results are analyzed statistically and the minimum number of candidate solutions and the minimum number of generations of the RHPSO algorithm are derived within the allowable control error.

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Distributed Moving Algorithm of Swarm Robots to Enclose an Invader (침입자 포위를 위한 군집 로봇의 분산 이동 알고리즘)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.224-229
    • /
    • 2009
  • When swarm robots exist in the same workspace, first we have to decide robots in order to accomplish some tasks. There have been a lot of works that research how to control robots in cooperation. The interest in using swarm robot systems is due to their unique characteristics such as increasing the adaptability and the flexibility of mission execution. When an invader is discovered, swarm robots have to enclose a invader through a variety of path, expecting invader's move, in order to effective enclose. In this paper, we propose an effective swarm robots enclosing and distributed moving algorithm in a two dimensional map.

Distributed Search of Swarm Robots Using Tree Structure in Unknown Environment (미지의 환경에서 트리구조를 이용한 군집로봇의 분산 탐색)

  • Lee, Gi Su;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.285-292
    • /
    • 2018
  • In this paper, we propose a distributed search of a cluster robot using tree structure in an unknown environment. In the proposed method, the cluster robot divides the unknown environment into 4 regions by using the LRF (Laser Range Finder) sensor information and divides the maximum detection distance into 4 regions, and detects feature points of the obstacle. Also, we define the detected feature points as Voronoi Generators of the Voronoi Diagram and apply the Voronoi diagram. The Voronoi Space, the Voronoi Partition, and the Voronoi Vertex, components of Voronoi, are created. The generated Voronoi partition is the path of the robot. Voronoi vertices are defined as each node and consist of the proposed tree structure. The root of the tree is the starting point, and the node with the least significant bit and no children is the target point. Finally, we demonstrate the superiority of the proposed method through several simulations.

A Position Control of Seesaw System using Particle Swarm Optimization - PID Controller (PSO-PID를 이용한 시소 시스템의 위치제어)

  • Son, Yong Doo;Son, Jun Ik;Choo, Yeon Gyu;Lim, Young Do
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.185-188
    • /
    • 2009
  • In this paper, Position Controller for balance of Seesaw System design using PID Algorithm. Seesaw System is that it's system use widely to analyze of ship or flight dynamics, Inverted Pendulumand, Robot System, manage system for theory of modern control system and all sorts of analysis. In case of Seesaw System, it's necessity that understand and analysis of system and correct selection of parameter because the system is strong nonlinear control system. It guarantees efficiency and stability to adapt quickly for disturbance or change of controller from PID Algorithm of guarantee safe from simple and long history and PSO(Particle Swarm Optimization) that sort of metaheuristic optimization that need to accuracy and fast PID parameter tuning.

  • PDF

Passivity Based Adaptive Control and Its Optimization for Upper Limb Assist Exoskeleton Robot (상지 근력 보조용 착용형 외골격 로봇의 수동성 기반 적응 제어와 최적화 기법)

  • Khan, Abdul Manan;Ji, Young Hoon;Ali, Mian Ashfaq;Han, Jung Soo;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.857-863
    • /
    • 2015
  • The need for human body posture robots has led researchers to develop dexterous design of exoskeleton robots. Quantitative techniques to assess human motor function and generate commands for robots were required to be developed. In this paper, we present a passivity based adaptive control algorithm for upper limb assist exoskeleton. The proposed algorithm can adapt to different subject parameters and provide efficient response against the biomechanical variations caused by subject variations. Furthermore, we have employed the Particle Swarm Optimization technique to tune the controller gains. Efficacy of the proposed algorithm method is experimentally demonstrated using a seven degree of freedom upper limb assist exoskeleton robot. The proposed algorithm was found to estimate the desired motion and assist accordingly. This algorithm in conjunction with an upper limb assist exoskeleton robot may be very useful for elderly people to perform daily tasks.

Integrating Ant Colony Clustering Method to a Multi-Robot System Using Mobile Agents

  • Kambayashi, Yasushi;Ugajin, Masataka;Sato, Osamu;Tsujimura, Yasuhiro;Yamachi, Hidemi;Takimoto, Munehiro;Yamamoto, Hisashi
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.3
    • /
    • pp.181-193
    • /
    • 2009
  • This paper presents a framework for controlling mobile multiple robots connected by communication networks. This framework provides novel methods to control coordinated systems using mobile agents. The combination of the mobile agent and mobile multiple robots opens a new horizon of efficient use of mobile robot resources. Instead of physical movement of multiple robots, mobile software agents can migrate from one robot to another so that they can minimize energy consumption in aggregation. The imaginary application is making "carts," such as found in large airports, intelligent. Travelers pick up carts at designated points but leave them arbitrary places. It is a considerable task to re-collect them. It is, therefore, desirable that intelligent carts (intelligent robots) draw themselves together automatically. Simple implementation may be making each cart has a designated assembly point, and when they are free, automatically return to those points. It is easy to implement, but some carts have to travel very long way back to their own assembly point, even though it is located close to some other assembly points. It consumes too much unnecessary energy so that the carts have to have expensive batteries. In order to ameliorate the situation, we employ mobile software agents to locate robots scattered in a field, e.g. an airport, and make them autonomously determine their moving behaviors by using a clustering algorithm based on the Ant Colony Optimization (ACO). ACO is the swarm intelligence-based methods, and a multi-agent system that exploit artificial stigmergy for the solution of combinatorial optimization problems. Preliminary experiments have provided a favorable result. In this paper, we focus on the implementation of the controlling mechanism of the multi-robots using the mobile agents.

Obstacle avoidance control based on self-organization for swarm mobile robot (다개체 모바일 로봇의 자기조직화를 통한 장애물 회피 제어)

  • Han, Byung-Jo;Park, Gi-Kwang;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1638_1639
    • /
    • 2009
  • This paper propose a mobile robot for the obstacle avoidance control. The proposed method based on self-organization method is a way to escape of obstacle. Optimal path planning and obstacle avoidance, depending on its final goal will arrive at exactly the mobile robot. Simulation results show the validity of the proposed method.

  • PDF

Distributed Model Predictive Formation Control of UGV Swarm Guaranteeing Collision Avoidance (충돌 회피가 보장된 분산화된 군집 UGV의 모델 예측 포메이션 제어)

  • Park, Seong-Chang;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.115-121
    • /
    • 2022
  • This paper proposes a distributed model predictive formation control algorithm for a group of unmanned ground vehicles (UGVs) with guaranteeing collision avoidance between UGVs. Generally, the model predictive control based formation control has a disadvantage in that it takes a long time to compute control inputs when considering collision avoidance between UGVs. In this paper, in order to overcome this problem, the formation control algorithm is implemented in a distributed manner so that it could be individually controlled. Also, a collision-avoidance method considering real-time is proposed. The proposed formation control algorithm is implemented based on robot operating system (ROS), open source-based middleware. Through the various simulation tests, it is confirmed that the formation control of five UGVs is successfully performed while avoiding collisions between UGVs.